Worksheet #8: Classifying different versions of parallel search algorithm

Enter “YES” or “NO”, as appropriate, in each box below

<table>
<thead>
<tr>
<th>Example: String Search variation</th>
<th>Data Race Free?</th>
<th>Functionally Deterministic?</th>
<th>Structurally Deterministic?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1: Count of all occurrences</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>V2: Existence of an occurrence</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>V3: Index of any occurrence</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>V4: Optimized existence of an occurrence: do not create more async tasks after occurrence is found</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>V5: Optimized index of any occurrence: do not create more async tasks after occurrence is found</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
Streaming data requirements have skyrocketed

- AT&T processes roughly 30 petabytes per day through its telecommunications network
- Google processed roughly 24 petabytes per day in 2009
- Facebook, Amazon, Twitter, etc, have comparable throughputs
- Two Sigma maintains over 100 teraflops of private computing power, continuously computing over 11 petabytes of quantitative data
- In comparison, the IBM Watson knowledge base stored roughly 4 terabytes of data when winning at Jeopardy

Parallelism enables processing of big data

- Continuously streaming data needs to be processed at least as fast as it is accumulated, or we will never catch up
- The bottleneck in processing very large data sets is dominated by the speed of disk access
- More processors accessing more disks enables faster processing
Parallelism enables “Cloud Computing” as a Utility

- Offers computing, storage, communication at pennies per hour
 - *Leverage Parallelism to Achieve Energy-Efficient High Performance*
- No premium to scale:
 - 1000 computers @ 1 hour
 - = 1 computer @ 1000 hours
- Illusion of infinite scalability to cloud user
 - As many computers as you can afford
- Leading examples: Amazon Web Services (AWS), Google App Engine, Microsoft Azure
 - Economies of scale pushed down datacenter costs by factors of 3-8X
 - Traditional data centers utilized 10% - 20%
 - Make profit offering pay-as-you-go use service at less than your costs for as many computers as you need
 - Strategic capability for company’s needs
- Challenge: portable and scalable parallelism at cloud scale
 - One solution: leverage functional programming with MapReduce pattern

MapReduce Pattern

- Apply **Map** function \(f \) to user supplied record of key-value pairs
- Compute set of intermediate key/value pairs
- Apply **Reduce** operation \(g \) to all values that share same key to combine derived data properly
 - Often produces smaller set of values
- User supplies Map and Reduce operations in functional model so that the system can parallelize them, and also re-execute them for fault tolerance
MapReduce: The Map Step

Input set of key-value pairs

Flattened intermediate set of key-value pairs

\[k \quad v\]

\[k' \quad v'\]

... \[k \quad v\]

... \[k' \quad v'\]

MapReduce: The Reduce Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

\[k' \quad v'\]

\[k' \quad v' \quad v''\]

reduce \[k' \quad v''\]

... \[k' \quad v'\]

... \[k' \quad v'\]

... \[k' \quad v''\]

Map Reduce: Summary

- Input set is of the form \{((k_1, v_1), \ldots, (k_n, v_n))\}, where \((k_i, v_i)\) consists of a key, \(k_i\), and a value, \(v_i\).
 - Assume that the key and value objects are immutable, and that equality comparison is well defined on all key objects.
- Map function \(f\) generates sets of intermediate key-value pairs, \(f(k_i, v_i) = \{(k'_1, v'_1), \ldots, (k'_m, v'_m)\}\). The \(k'_j\) keys can be different from \(k_i\) key in the input of the map function.
 - Assume that a flatten operation is performed as a post-pass after the map operations, so as to avoid dealing with a set of sets.
- Reduce operation groups together intermediate key-value pairs, \(\{(k', v'_j)\}\) with the same \(k'\), and generates a reduced key-value pair, \((k'', v'')\), for each such \(k'\), using reduce function \(g\).

Google Uses MapReduce For …

- Web crawl: Find outgoing links from HTML documents, aggregate by target document
- Google Search: Generating inverted index files using a compression scheme
- Google Earth: Stitching overlapping satellite images to remove seams and to select high-quality imagery
- Google Maps: Processing all road segments on Earth and render map tile images that display segments
- More than 10,000 MR programs at Google in 4 years, run 100,000 MR jobs per day (2008)
MapReduce: State of Practice

- **Apache Hadoop** now dominates use of the MapReduce framework
- Often, Hadoop map and reduce functions are *no longer written directly*
 - *Instead, a user writes a query in a very high level language and uses another tool to compile the query into map/reduce functions!*
 - **Hive** (another Apache project) compiles SQL queries into map/reduce
 - **Pig** (yet another Apache project) compiles direct relational algebra into map/reduce

MapReduce: State of Practice

- Eventually, users started realizing that a much larger class of algorithms could be expressed as an iterative sequence of map/reduce operations
 - Many machine learning algorithms fall into this category
- Tools started to emerge to enable easy expression of multiple map/reduce operations, along with smart scheduling
 - **Apache Spark**: General purpose functional programming over a cluster
 - Caches results of map/reduce operations in memory so they can be used on subsequent iterations without accessing disk each time
 - Tends to be 10-100 times faster than Hadoop for many applications
MapReduce Execution

Fine granularity tasks: many more map tasks than machines

Bucket sort to get same keys together

2000 servers =>
≈ 200,000 Map Tasks, ≈ 5,000 Reduce tasks

WordCount example

In: set of words
Out: set of (word, count) pairs

Algorithm:
1. For each in word W, emit (W, 1) as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key (reduce step).
 - All map operations in step 1 can execute in parallel with only local data accesses
 - Step 2 may involve a major reshuffle of data as all key-value pairs with the same key are grouped together.
 - Step 3 performs a standard reduction algorithm for all values with the same key, and in parallel for different keys.
PseudoCode for WordCount

1. `<String, Integer> map(String inKey, String inValue):
2. // inKey: document name
3. // inValue: document contents
4. for each word w in inValue:
5. emitIntermediate(w, 1) // Produce count of words
6.
7. `<Integer> reduce(String outKey, Iterator<Integer> values):
8. // outKey: a word
9. // values: a list of counts
10. Integer result = 0
11. for each v in values:
12. result += v // the value from map was an integer
13. emit(result)

Example Execution of WordCount Program

Distribute

```
that that is is that that is not is not is that it it is
Map 1 is 1, that 2
Map 2 is 1, that 2
Map 3 is 2, not 2
Map 4 is 2, it 2, that 1
```

Shuffle

```
is 1,1,2,2
it 2
Reduce 1 is 6; it 2
tht 2,2,1
not 2
Reduce 2 not 2; that 5
```

Collect

```
is 6; it 2; not 2; that 5
```