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Solution to Worksheet #15:
Left-Right Neighbor Synchronization using Phasers

i=1 =2 =3 =4 =5 =6 i=7 i=8
doPhase1(i) @ @ @ © ©@ © © ©

DK K X K K K

doPhase2(i) @ @ @@ © @@ © @ O

Complete the phased clause below to implement the left-right neighbor
synchronization shown above.

1. finish (() -> {
2. final HjPhaser[] ph =
new HjPhaser[m+2]; // array of phaser objects
3. forseq(0, m+l, (i) -> { ph[i] = newPhaser (SIG_WAIT) });

4. forseq(l, m, (i) -> {
5. asyncPhased(( N E: Task-to-
ph[i-1].inMode(WAIT), phaser mappings can be

ph[i].inMode(SIG), many-to-many in general. In
ph[i+l].inMode (WAIT), () -> { general, it is important to
doPhasel (i) ; understand the difference between
next (); computation tasks (async’s) and
doPhase2(i); }); // asyncPhased synchronization objects
}); // forseq (phasers).
0.}); // finish
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Medical imaging pipelin

« New reconstruction methods

— decrease radiation exposure
(CT)

— numbar of camnlec (MR)

- 3D/4D image analysis pipeline
— Denoising
— Registration
— Segmentation

« Analysis

— Real-time quantitative cancer
assessment applications

« Potential:

— order-of-magnitude
performance improvement

— power efficiency improvements

— real-time clinical applications
and simulations using patient
imaging data
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Pipeline Parallelism: Another Example of
Point-to-point Synchronization

DENOISE ——| REGISTER —> SEGMENT

 Medical imaging pipeline with three stages
1. Denoising stage generates a sequence of results,
one per image.
2. Registration stage’s input is Denoising stage’s
output.

3. Segmentation stage’s input is Registration stage’s
output.

« Even though the processing is sequential for a single
image, pipeline parallelism can be exploited via point-
to-point synchronization between neighboring stages
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General structure of a One-Dimensional
Pipeline

Input sequence

d9d8d7d6d5d4d3d2d1d0 —>> PO > Pl > P2 i P3 > P4 > P5 > P6 > P7 > P8 > P9

« Assuming that the inputs d,, d,, . . . arrive sequentially,
pipeline parallelism can be exploited by enabling task
(stage) P; to work on item d,_; when task (stage) P, is
working on item d,.
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Timing Diagram for One-Dimensional
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« Horizontal axis shows progress of time from left to right, and
vertical axis shows which data item is being processed by
which pipeline stage at a given time.
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Complexity Analysis of
One-Dimensional Pipeline

e Assume

—n = number of items in input sequence
——p = number of pipeline stages
—each stage takes 1 unit of time to process a single data item

e WORK = nxp is the total work for all data items
e CPL=n+p-1isthe critical path length of the pipeline
¢ |deal parallelism, PAR = WORK/CPL=np/(n+p -1)
e Boundary cases
—p=1=2>PAR=n/(n+1-1)=1
—n=1=2>PAR=p/(1+p-1)=1
—n=p => PAR =p/(2 - 1/p) = p/2
—n>»p => PAR=p
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Using a phaser to implement
pipeline parallelism (unbounded buffer)

1. asyncPhased(ph.1nMode(SIG), () -> {

2 for (int i = 0; i < rounds; i++) {
3 buffer.insert(.);

4 // producer can go ahead as they are in SIG mode
5. next();

6 }

7. 1);

8

9. asyncPhased(ph.1nMode(WAIT), () -> {
10. for (int 1 = 0; 1 < rounds; i++) {
11. next();

12. buffer.removec(..);

13. }

14. });
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Signal statement & Fuzzy barriers

e When a task T performs a signal operation, it notifies all the phasers it is
registered on that it has completed all the work expected by other tasks
(“shared” work) in the current phase.

e Later, when T performs a next operation, the next degenerates to a wait
since a signal has already been performed in the current phase.

e The execution of “local work” between signal and next is overlapped
with the phase transition (referred to as a “split-phase barrier” or “fuzzy
barrier”)

signal nexf
1. forall (point[i] : [0:1]) { (i=0) (=1
2 AC1); // Phase O
3 if (i==0) { signal; B(i); } @ @
4. next; // Barrier ext  next
5 C(1); // Phase 1 @ (i=0)  (i=1)
6. if (i==1) { p(i); }
/

} (2
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Another Example of a Split-Phase Barrier
using the Signal Statement

l.finish(() -> {

2. final HjPhaser ph = newPhaser(SIG WAIT);

3. asyncPhased(ph.inMode(SIG WAIT), () -> { // Task T1

4 a= ... ; // Shared work in phase 0

B. signal(); // Signal completion of a's computation
6. b=...; // Local work in phase 0

7 next(); // Barrier -- wait for T2 to compute x
8 b = £(b,x); // Use x computed by T2 in phase 0

9. 1

10. asyncPhased(ph.inMode(SIG WAIT), () -> { // Task T2

11. X = co. // Shared work in phase 0

12. signal(); // Signal completion of x's computation
13. Y = coo 3 // Local work in phase 0

14 next(); // Barrier -- wait for Tl to compute a
15, y = £(y,a); // Use a computed by Tl in phase 0

16. });

17.}); // finish

D
4
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Computation Graph for Split-Phase Barrier Example
(without async-finish nodes and edges)
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Full Computation Graph for Split-Phase
Barrier Example
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Midterm exam (Exam 1)

Midterm exam (Exam 1) will be held during COMP 322 lab time at
7pm on Wednesday, February 24, 2016

—Closed-notes, closed-book, closed computer, written exam
scheduled for 3 hours during 7pm — 10pm (but you can leave
early if you’re done early!)

—Scope of exam is limited to Lectures 1 - 16 (all topics in Module 1

handout)

“Since this is a written exam and not a programming assignment,

syntactic errors in program text will not be penalized (e.g.,
missing semicolons, incorrect spelling of keywords, etc) so long

as the meaning of your solution is unambiguous.”

“If you believe there is any ambiguity or inconsistency in a
question, you should state the ambiguity or inconsistency that
you see, as well as any assumptions that you make to resolve it.”
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