
COMP 322: Fundamentals of
Parallel Programming

Lecture 2: Computation Graphs,
Ideal Parallelism

Instructors: Vivek Sarkar, Shams Iman
Department of Computer Science, Rice University

{vsarkar, shams}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 2 13 January 2016

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Async and Finish Statements for Task
Creation and Termination (Recap)

async S

• Creates a new child task
that executes statement S

2

finish S
§ Execute S, but wait until
all asyncs in S’s scope
have terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

1. finish {

2. async { Watch COMP 322 video for topic 1.2 by 1pm on Wednesday

3. Watch COMP 322 video for topic 1.3 by 1pm on Wednesday

4. }

5. async Make your bed

6. async { Clean out your fridge

7. Buy food supplies and store them in fridge }

8. finish { async Run load 1 in washer

9. async Run load 2 in washer }

10. async Run load 1 in dryer

11. async Run load 2 in dryer

12. async Call your family

13. }

14. Post on Facebook that you’re done with all your tasks!

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

One possible solution to Problem #1 in
Worksheet 1 (without statement reordering)

3

1. finish {

2. async Make your bed

3. async { Clean out your fridge

4. Buy food supplies and store them in fridge }

5. async { Run load 1 in washer

6. Run load 1 in dryer }

7. async { Run load 2 in washer

8. Run load 2 in dryer }

9. Watch COMP 322 video for topic 1.2 by 1pm on Wednesday

10. Watch COMP 322 video for topic 1.3 by 1pm on Wednesday

11. Call your family

12. }

13. Post on Facebook that you’re done with all your tasks!

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Another possible solution to Problem #1 in
Worksheet 1 (with statement reordering)

4

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. for (int k = 0 ; k < N ; k++)

5. async {

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Is this a correct solution for Problem #2 in
Worksheet 1?

5

Data race bug! Reads and writes can occur in parallel
on the same C[i][j] location, in this example!

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. async {

5. for (int k = 0 ; k < N ; k++)

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

 This program generates N2 parallel async tasks, one to
compute each C[i][j] element of the output array. Additional
parallelism can be exploited within the inner k loop, but that
would require more changes than inserting async & finish.

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

One Possible Solution to Problem #2 in Worksheet 1
(Parallel Matrix Multiplication)

6

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. async finish for (int j = 0 ; j < N ; j++)

4. async finish for (int k = 0 ; k < N ; k++)

5. C[i][j] = C[i][j] + A[i][k] * B[k][j];

6. } // finish

 What is the impact of finish in lines 3 and 4? Compare with:
7.finish {

8. for (int i = 0 ; i < N ; i++)

9. async for (int j = 0 ; j < N ; j++)

10. async for (int k = 0 ; k < N ; k++)

11. C[i][j] = C[i][j] + A[i][k] * B[k][j];

12. } // finish

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Another Possible Solution to Problem #2 in Worksheet 1
(Parallel Matrix Multiplication)

7

1. finish { // F1

2. async A;

3. finish { // F2

4. async B1;

5. async B2;

6. } // F2

7. B3;

8. } // F1

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Which statements can potentially be
executed in parallel with each other?

8

F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Computation Graphs
• A Computation Graph (CG) captures the dynamic execution of a

parallel program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async, begin-

finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s end-

finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

9

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Complexity Measures for Computation
Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path

length, also referred to as the span of the graph)
—CPL(G) is also the smallest possible execution time

for the computation graph

10

1. finish { // F1

2. async A; // Boil water & pasta (20)

3. finish { // F2

4. async B1; // Chop veggies (5)

5. async B2; // Brown meat (10)

6. } // F2

7. B3; // Make pasta sauce (5)

8. } // F1

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

What is the critical path length of this
parallel computation?

11

Step A

Step B1 Step B2

Step B3

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Ideal Parallelism

• Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only
depends on the computation
graph, and is the speedup that
you can obtain with an
unbounded number of
processors

12

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Which Computation Graph has more
ideal parallelism?

Assume that all nodes have TIME = 1, so WORK = 10 for both graphs.

13

Computation Graph 1 Computation Graph 2

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Data Races
 A data race occurs on location L in a program execution with

computation graph CG if there exist steps (nodes) S1 and S2
in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1,

i.e., S1 and S2 can potentially execute in parallel, and
2. Both S1 and S2 read or write L, and at least one of the

accesses is a write.

• A data-race is an error. The result of a read operation in a
data race is undefined. The result of a write operation is
undefined if there are two or more writes to the same location.

• Above definition includes all “potential” data races i.e., we
consider it to be a data race even if S1 and S2 end up
executing on the same processor.

14

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. for (int k = 0 ; k < N ; k++)

5. async {

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Data Race Example:
Buggy Matrix Multiply with N = 2

15

No directed edge in computation graph between
S6(i=0,j=0,k=0) and S6(i=0,j=0,k=1), but both read
and write C[0][0].

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Reminders
• IMPORTANT:

—Send email to comp322-staff@rice.edu if you do not have access to
Piazza site (otherwise use Piazza for class communications, as far as
possible)

—Bring your laptop to today’s lab at 7pm on Wednesday (Section A01:
DH 1064, Section A02: DH 1070)

—Watch videos for topic 1.4 for next lecture on Friday

• Complete each week’s assigned quizzes on edX by 11:59pm that Friday.
This week, you should submit quizzes for lecture & demonstration videos
for topics 1.1, 1.2, 1.3, 1.4

• HW1 will be assigned on Jan 15th and be due on Jan 28th

• See course web site for syllabus, work assignments, due dates, …
• http://comp322.rice.edu

16

