COMP 322: Fundamentals of Parallel Programming

Lecture 3: Computation Graphs, Ideal Parallelism

Instructors: Vivek Sarkar, Shams Iman Department of Computer Science, Rice University \{vsarkar, shams\}@rice.edu
http://comp322.rice.edu

One Possible Solution to Worksheet 2 (Reverse Engineering a Computation Graph)

Observations:

- Any node with out-degree > 1 must be an async (must have an outgoing spawn edge)
- Any node with in-degree > 1 must be an endfinish (must have an incoming join edge
- Adding or removing transitive edges does not impact ordering constraints
1.A();
2.finish \{ // F1

3. async D();
4. B();
5. \{
6. E();
7. finish \{ // F2
8. async H();
9. \quad () ;
10. \} // F2
11. G();
12. \}
13. \} // F1
14. C();

Ideal Parallelism (Recap)

- Define ideal parallelism of Computation G Graph as the ratio, WORK(G)/CPL(G)
- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors
Example:
WORK(G) = 26
CPL(G) = 11

Computation Graphs are used in Project Scheduling as well

- Computation graphs are referred to as "Gantt charts" in project management
- Sample project for preparing a printed document
-Source: http://www.gantt.com/creating-gantt-charts.htm

Scheduling of a Computation Graph on a fixed number of processors: Example

node label = time(N), for all nodes N in the graph

NOTE: this schedule achieved a completion time of 11. Can we do better?

Start time	Proc 1	Proc 2	Proc 3	
0	A			
1	B			
2	C	N		
3	D	N	I	
4	D	N	J	
5	D	N	K	
6	D	Q	L	
7	E	R	M	
8	F	R	O	
9	G	R	P	
10	H			
11	Completion time $=11$			

Scheduling of a Computation Graph on a fixed number of processors, P

- Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for creating parallel tasks
- A schedule specifies the following for each node
-START(N) = start time
- PROC(N) = index of processor in range 1...P
such that
-START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)
-A node occupies consecutive time slots in a processor (Nonpreemption constraint)
-All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

Greedy Schedule

- A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution
- A node is ready for execution if all its predecessors have been executed
- Observations

$$
\begin{aligned}
& -T_{1}=\operatorname{WORK}(G), \text { for all greedy schedules } \\
& -T_{\infty}=\operatorname{CPL}(G), \text { for all greedy schedules }
\end{aligned}
$$

- where $T_{p}=$ execution time of a schedule for computation graph G on P processors

Lower Bounds on Execution Time of Schedules

- Let $T_{P}=$ execution time of a schedule for computation graph G on P processors
-Can be different for different schedules
- Lower bounds for all greedy schedules
-Capacity bound: $T_{P} \geq$ WORK(G)/P
-Critical path bound: $T_{P} \geq \operatorname{CPL}(G)$
- Putting them together
$-T_{P} \geq \max ($ WORK(G)/P, CPL(G))

Upper Bound on Execution Time of Greedv Schedules

Theorem [Graham '66]. Any greedy scheduler achieves

$$
T_{P} \leq \operatorname{WORK}(G) / P+\operatorname{CPL}(G)
$$

Proof sketch:

Define a time step to be complete if $\geq P$ nodes are ready at that time, or incomplete otherwise
\# complete time steps $\leq \operatorname{WORK}(G) / P$
\# incomplete time steps $\leq \operatorname{CPL}(G)$

Start time	Proc 1	Proc 2	Proc 3
0	A		
1	B		
2	C	N	
3	D	N	I
4	D	N	J
5	D	N	K
6	D	Q	L
7	E	R	M
8	F	R	O
9	G	R	P
10	H		
11			

Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get $\max (\mathrm{WORK}(\mathrm{G}) / \mathrm{P}, \mathrm{CPL}(\mathrm{G})) \leq \mathrm{T}_{\mathrm{P}} \leq \operatorname{WORK}(\mathrm{G}) / \mathrm{P}+\mathrm{CPL}(\mathrm{G})$

Corollary 1: Any greedy scheduler achieves execution time T_{p} that is within a factor of 2 of the optimal time (since $\max (a, b)$ and ($a+b$) are within a factor of 2 of each other, for any $a \geq 0, b$ ≥ 0).

Corollary 2: Lower and upper bounds approach the same value whenever

- There's lots of parallelism, WORK(G)/CPL(G) >>P
- Or there's little parallelism, WORK(G)/CPL(G) << P

Abstract Performance Metrics

- Basic Idea
- Count operations of interest, as in big-O analysis
- Abstraction ignores many overheads that occur on real systems
- Calls to doWork()
- Programmer inserts calls of the form, doWork(N), within a step to indicate abstraction execution of N application-specific abstract operation
- e.g., in the Homework 1 programming assignment (Parallel Sort), we will include one call to doWork(1) in each call to compareTo(), and ignore the cost of everything else.
- Abstract metrics are enabled by calling
- HjSystemProperty.abstractMetrics.set(true);
- If an HJ program is executed with this option, abstract metrics are printed at end of program execution with WORK(G), CPL(G), Ideal Parallelism = WORK(G) / CPL(G)

Reminders

- Send email to comp322-staff@rice.edu if you do not have access to Piazza site (otherwise use Piazza for class communications, as far as possible)
- Office hours today will be held during 2pm - 3pm in Duncan Hall 3092
- Watch videos and read handout for topic 1.5 for next lecture on Wednesday, Jan 20th
- Complete this week's assigned quizzes on edX by 11:59pm today (all quizzes for topics 1.1, 1.2, 1.3, 1.4 including last quiz titled "Multiprocessor Scheduling")
- HW1 will be assigned today, and is due by 12noon on Jan 29th
- See course web site for all work assignments and due dates
- http://comp322.rice.edu

