Worksheet #34: MPI Gather

Indicate what value should be provided instead of ??? in line 6 to minimize space, and how it should depend on myrank.

Solution: myrank == 0 ? (size * numProcs) : 0
Worksheet #36: UPC data distributions

In the following example from Lecture 36 slide 20, assume that each UPC array is distributed by default across threads with a cyclic distribution. In the space below, identify an iteration of the upc_forall construct for which all array accesses are local, and an iteration for which all array accesses are non-local (remote).

Assume 2 <= THREADS < 100. Explain your answer in each case.

1. shared int a[100], b[100], c[100];
2. int i;
3. upc_forall (i=0; i<100; i++; (i*THREADS)/100)
4. a[i] = b[i] * c[i];

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner in 2-thread case</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], c[0], all of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], c[1], all of which are located remotely at thread 1

MapReduce Pattern (Recap from Lecture 9)

• Apply Map function f to user supplied record of key-value pairs
• Compute set of intermediate key/value pairs
• Apply Reduce operation g to all values that share same key to combine derived data properly
 —Often produces smaller set of values
• User supplies Map and Reduce operations in functional model so that the system can parallelize them, and also re-execute them for fault tolerance
MapReduce Execution

Fine granularity tasks: many more map tasks than machines

- Input
- Intermediate: $k1:v$, $k2:v$, $k3:v$, $k4:v$, $k5:v$
- Group by Key
- Grouped: $k1:v,v,v,v$, $k2:v$, $k3:v,v$, $k4:v,v,v$, $k5:v$
- Output

Bucket sort to get same keys together

- 2000 servers => $\approx 200,000$ Map Tasks, $\approx 5,000$ Reduce tasks

Map/Reduce and Iterative Algorithms

- Apache Hadoop now dominates use of the Map/Reduce framework
- Algorithms could be expressed as an iterative sequence of map/reduce operations
 — Many machine learning algorithms, e.g. gradient descent, fall into this category
- This iterative pattern is also useful to interactively query large datasets
Spark and Iterative Map/Reduce

- Apache Spark: General purpose functional programming over a cluster
 - Caches results of map/reduce operations in memory so they can be used on subsequent iterations
 - Tends to be 10-100 times faster than Hadoop for many applications

Apache Spark

- Spark is a data parallel processing framework, which means it will execute tasks as close to where the data lives as possible (i.e. minimize data transfer).
- Spark follows a paradigm of keeping as much data in-memory and spilling excess to disk rather than pulling data from disk when needed.
- Spark revolves around the concept of a resilient distributed datasets (RDD).
- Spark decomposes your program into tasks and handles dispatching and scheduling of these tasks on worker nodes in your cluster.
Resilient Distributed Datasets

• The key construct in Spark is the Resilient Distributed Dataset (RDD)
 — RDDs can be though of as a collection of key-value pairs

• An RDD is a giant immutable collection, distributed in a redundant way over all the machines in a cluster

• The types of the elements in the RDD can be arbitrary elements

• If the elements are pairs, then the RDD acts like a table

• Computations on an RDD (including Map/Reduce) can be expressed as functional programming operations

Working with RDDs

• There are two kinds of operations one can perform over an RDD.

 • Transformations: Operations like map, filter, join etc. that just return another RDD. They are lazy operations.

 • Actions: These are operations that actually produce results like count, collect, save etc. These operations don't return an RDD.

 • Similar to intermediate and terminal operations in Java 8 Streams.
Advantages of Immutability

- The distributed nature of RDDs is not evident in the programming model.
- RDD elements can be replicated for fault tolerance.
- Purely functional operations can be easily defined on RDDs.
- Because RDDs are immutable, all the operations from purely functional programming can be applied and parallelized in a straightforward way.
- The runtime has great flexibility in scheduling operations on RDDs and executing them in parallel on partitions.
- Partitions of RDDs can be recomputed from their lineage.

Word Count in Apache Spark

```java
JavaRDD<String> file = context.textFile(inputFile);

JavaPairRDD<String, Integer> counter =
    file.flatMap(s -> Arrays.asList(s.split(" ")))
    .mapToPair(s -> new Tuple2<>(s, 1))
    .reduceByKey((a, b) -> a + b);

counter.collect().forEach(System.out::println);
```
JavaRDD<String> file = context.textFile(inputFile);

JavaPairRDD<String, Integer> counter =
 file.flatMap(s -> Arrays.asList(s.split(" ")))
 .mapToPair(s -> new Tuple2<>(s, 1))
 .reduceByKey((a, b) -> a + b);

counter.collect().forEach(System.out::println);

x.flatMap(f) = x.map(f).flatten()
Word Count in Apache Spark

```java
JavaRDD<String> file = context.textFile(inputFile);

JavaPairRDD<String, Integer> counter =
    file.flatMap(s -> Arrays.asList(s.split(" ")))
    .mapToPair(s -> new Tuple2<>(s, 1))
    .reduceByKey((a, b) -> a + b);

counter.collect().forEach(System.out::println);
```

```java
["this", "is", "a", "line", "this", "is", "another", "line", "this", "is", "yet", "another", "line"]
.map(s -> new Tuple2<>(s, 1))
```

—>

```java
[["this",1], ["is",1], ["a",1], ["line",1], ["this",1], ["is",1], ["another",1], ["line",1], ["this",1], ["is",1], ["yet",1], ["another",1], ["line",1]]
```

Word Count in Apache Spark
JavaRDD<String> file = context.textFile(inputFile);

JavaPairRDD<String, Integer> counter =
 file.flatMap(s -> Arrays.asList(s.split(" ")))
 .mapToPair(s -> new Tuple2<>(s, 1))
 .reduceByKey((a, b) -> a + b);

counter.collect().forEach(System.out::println);

x.reduceByKey(f) = x.groupByKey()
 .map(xs -> xs.reduce((a,b) -> a + b))
Word Count in Apache Spark

```scala
[["this", [1,1,1]],
 ["is", [1,1,1]],
 ["a", [1]],
 ["line", [1,1,1]],
 ["another", [1,1]],
 ["yet", [1]]].map(xs -> xs.reduce((a,b) -> a + b))
```

```scala
——>

```scala
[["this", [1,1,1]].reduce((a,b) -> a + b),
 ["is", [1,1,1]].reduce((a,b) -> a + b),
 ["a", [1]].reduce((a,b) -> a + b),
 ["line", [1,1,1]].reduce((a,b) -> a + b),
 ["another", [1,1]].reduce((a,b) -> a + b),
 ["yet", [1]].reduce((a,b) -> a + b))]
```

19

Word Count in Apache Spark

```scala
[["this", [1,1,1]].reduce((a,b) -> a + b),
 ["is", [1,1,1]].reduce((a,b) -> a + b),
 ["a", [1]].reduce((a,b) -> a + b),
 ["line", [1,1,1]].reduce((a,b) -> a + b),
 ["another", [1,1]].reduce((a,b) -> a + b),
 ["yet", [1]].reduce((a,b) -> a + b))]
```

```scala
——>

```scala
[["this", 3], ["is", 3], ["a", 1],
 ["line", 3], ["another", 2], ["yet", 1]]
```