
Instructors: Vivek Sarkar, Shams Iman
Department of Computer Science, Rice University

{vsarkar, shams}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 4 20 January 2016

COMP 322: Fundamentals of
Parallel Programming

Lecture 4: Parallel Speedup
and Amdahl's Law

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

One Possible Solution to Worksheet 3
(Multiprocessor Scheduling)

2

• As before, WORK = 26 and CPL = 11 for this graph
• T2 = 15, for the 2-processor schedule on the right
• We can also see that

 max(CPL,WORK/2) <= T2 < CPL + WORK/2

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

Start%time! Proc%1! Proc%2!

0! A% !

1! B% !

2! C% N%

3! D% N%

4! D% N%

5! D% N%

6! D% O%

7! I% Q%

8! J% R%

9! L% R%

10! K% R%

11! M% E%

12% F% P%

13% G% !

14% H% !

15% ! !

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Parallel Speedup

• Define Speedup(P) = T1 / TP
—Factor by which the use of P processors speeds up execution

time relative to 1 processor, for a fixed input size
—For ideal executions without overhead, 1 <= Speedup(P) <= P
—Linear speedup

– When Speedup(P) = k*P, for some constant k, 0 < k < 1

• Ideal Parallelism
= WORK / CPL
= Parallel Speedup on an unbounded number of processors

3

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Reduction Tree Schema for computing
Array Sum in parallel

4

Assume input array size = S, and each add takes 1 unit of time:
• WORK(G) = S-1
• CPL(G) = log2(S)
• Use upper bound to estimate TP = WORK(G)/P + CPL(G)

= (S-1)/P + log2(S)
• Within a factor of 2 of any greedy schedule’s execution time

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

How many processors should we use?
• Define Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

— Processor efficiency --- figure of merit that indicates how well a
parallel program uses available processors

— For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
— S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
— Figure of merit that indicates how large an input size is needed to

obtain efficient parallelism
— A larger value of S1/2 indicates that the problem is harder to parallelize

efficiently

• How many processors to use?
— Common goal: choose number of processors, P for a given input size,

S, so that efficiency is at least 0.5

5

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

ArraySum: Speedup as function of array size, S,
and number of processors, P  

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Asymptotically, Speedup(S,P) →S/log2S, as P → infinity

6

Number of processors, P (log scale)

Sp
ee

du
p(

S,
P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(S=1024)" Speedup"(S=2048)"
Efficiency(P) ≤ 0.5,
for P ≥ 258
==> wasteful to use
more than 256
processors for S=2048

Efficiency(P) ≤ 0.5,
for P ≥ 128
==> wasteful to use
more than 128
processors for S=1024

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially

for a given input size S, then the best speedup that can be obtained for that program is
Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on parallel execution
time

— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program can be
divided into sequential and parallel portions

— Sequential portion of WORK = q
– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q
– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account

7

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Illustration of Amdahl’s Law: 
Best Case Speedup as function of Parallel Portion

8

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)

