COMP 322: Fundamentals of Parallel Programming

Lecture 4: Parallel Speedup and Amdahl's Law

Instructors: Vivek Sarkar, Shams Iman Department of Computer Science, Rice University {vsarkar, shams}@rice.edu

http://comp322.rice.edu

One Possible Solution to Worksheet 3 (Multiprocessor Scheduling)

- As before, WORK = 26 and CPL = 11 for this graph
- T₂ = 15, for the 2-processor schedule on the right
- We can also see that max(CPL,WORK/2) <= T₂ < CPL + WORK/2

Start time	Proc 1	Proc 2
0	Α	
1	В	
2	С	N
3	D	N
4	D	N
5	D	N
6	D	0
7	Ι	Q
8	J	R
9	L	R
10	К	R
11	Μ	Е
12	F	Р
13	G	
14	Н	
15		

Parallel Speedup

- Define Speedup(P) = T₁ / T_P
 - —Factor by which the use of P processors speeds up execution time relative to 1 processor, for a fixed input size
 - —For ideal executions without overhead, 1 <= Speedup(P) <= P
 - —Linear speedup
 - When Speedup(P) = k*P, for some constant k, 0 < k < 1
- Ideal Parallelism
 - = WORK / CPL
 - = Parallel Speedup on an unbounded number of processors

Reduction Tree Schema for computing Array Sum in parallel

- WORK(G) = S-1
- CPL(G) = log2(S)
- Use upper bound to estimate $T_p = WORK(G)/P + CPL(G)$
 - $= (S-1)/P + \log 2(S)$
 - Within a factor of 2 of any greedy schedule's execution time

How many processors should we use?

- Define Efficiency(P) = Speedup(P)/ P = T₁/(P * T_P)
 - Processor efficiency --- figure of merit that indicates how well a parallel program uses available processors
 - For ideal executions without overhead, 1/P <= Efficiency(P) <= 1
- Half-performance metric
 - $-S_{1/2}$ = input size that achieves Efficiency(P) = 0.5 for a given P
 - Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
 - A larger value of $S_{1/2}$ indicates that the problem is harder to parallelize efficiently
- How many processors to use?
 - Common goal: choose number of processors, P for a given input size,
 S, so that efficiency is at least 0.5

ArraySum: Speedup as function of array size, S, and number of processors, P

- Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log₂(S))
- Asymptotically, Speedup(S,P) \rightarrow S/log₂S, as P \rightarrow infinity

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Amdahl's Law [1967]

- If q ≤ 1 is the fraction of WORK in a parallel program that <u>must be executed sequentially</u> for a given input size S, then the best speedup that can be obtained for that program is Speedup(S,P) ≤ 1/q.
- Observation follows directly from critical path length lower bound on parallel execution time
 - CPL >= q * T(S,1)
 - T(S,P) >= q * T(S,1)
 - Speedup(S,P) = T(S,1)/T(S,P) <= 1/q</p>
- This upper bound on speedup simplistically assumes that work in program can be divided into sequential and parallel portions
 - Sequential portion of WORK = q
 - also denoted as f_s (fraction of sequential work)
 - Parallel portion of WORK = 1-q
 - also denoted as f_p (fraction of parallel work)
- Computation graph is more general and takes dependences into account

Illustration of Amdahl's Law: Best Case Speedup as function of Parallel Portion

Figure source: <u>http://en.wikipedia.org/wiki/Amdahl</u>'s law

COMP 322, Spring 2016 (V.Sarkar, S.Imam)