COMP 322: Fundamentals of Parallel Programming

Lecture 4: Parallel Speedup and Amdahl's Law

Instructors: Vivek Sarkar, Shams Iman Department of Computer Science, Rice University \{vsarkar, shams\}@rice.edu
http://comp322.rice.edu

One Possible Solution to Worksheet 3 (Multiprocessor Scheduling)

- As before, WORK = 26 and CPL = 11 for this graph
- $\mathrm{T}_{2}=15$, for the 2-processor schedule on the right
- We can also see that $\max \left(\right.$ CPL,WORK/2) <= $\mathrm{T}_{2}<\mathrm{CPL}+\mathrm{WORK} / 2$

Start time	Proc 1	Proc 2
0	A	
1	B	
2	C	N
3	D	N
4	D	N
5	D	N
6	D	0
7	I	Q
8	J	R
9	L	R
10	K	R
11	F	P
12	H	
13		
15		

Parallel Speedup

- Define Speedup $(P)=T_{1} / T_{P}$
-Factor by which the use of P processors speeds up execution time relative to 1 processor, for a fixed input size
-For ideal executions without overhead, $1<=\operatorname{Speedup}(P)<=P$
-Linear speedup
- When Speedup(P) $=k^{*} P$, for some constant $k, 0<k<1$
- Ideal Parallelism
= WORK / CPL
= Parallel Speedup on an unbounded number of processors

Reduction Tree Schema for computing Arrav Sum in parallel

Assume input array size $=S$, and each add takes 1 unit of time:

- $\operatorname{WORK}(G)=S-1$
- $C P L(G)=\log 2(S)$
- Use upper bound to estimate $T_{p}=\operatorname{WORK}(G) / P+\operatorname{CPL}(G)$
$=(S-1) / P+\log 2(S)$
- Within a factor of 2 of any greedy schedule's execution time

How many processors should we use?

- Define Efficiency $(P)=$ Speedup $(P) / P=T_{1} /\left(P^{*} T_{P}\right)$
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available processors
—For ideal executions without overhead, $1 / \mathrm{P}<=$ Efficiency $(P)<=1$
- Half-performance metric
$-S_{1 / 2}=$ input size that achieves Efficiency $(P)=0.5$ for a given P
-Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
- A larger value of $\mathbf{S}_{1 / 2}$ indicates that the problem is harder to parallelize efficiently
- How many processors to use?
- Common goal: choose number of processors, P for a given input size, S , so that efficiency is at least 0.5

ArraySum: Speedup as function of array size, S, and number of processors, P

- Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + $\left.\log _{2}(\mathrm{~S})\right)$
- Asymptotically, Speedup(S,P) \rightarrow S/log 2 S , as $\mathrm{P} \rightarrow$ infinity

Amdahl's Law [1967]

- If $\mathrm{q} \leq 1$ is the fraction of WORK in a parallel program that must be executed sequentially for a given input size S, then the best speedup that can be obtained for that program is Speedup(S,P) $\leq 1 / q$.
- Observation follows directly from critical path length lower bound on parallel execution time
$-C P L>=q^{*} T(S, 1)$
$-T(S, P)>=q^{*} T(S, 1)$
- Speedup(S,P) $=T(S, 1) / T(S, P)<=1 / q$
- This upper bound on speedup simplistically assumes that work in program can be divided into sequential and parallel portions
- Sequential portion of WORK = q
- also denoted as f_{s} (fraction of sequential work)
- Parallel portion of WORK = 1-q
- also denoted as f_{p} (fraction of parallel work)
- Computation graph is more general and takes dependences into account

Illustration of Amdahl's Law: Best Case Speedup as function of Parallel Portion

Figure source: $\underline{h t t p: / / e n . w i k i p e d i a . o r g / w i k i / A m d a h l ' s ~ l a w ~}$

