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Goals for Today’s Lecture
• Recap of parallel complexity for ArraySum1

• Speedup, Efficiency, Amdahl’s Law

• Use of Abstract Performance Metrics
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Lower and Upper Bounds for  Greedy Schedulers
(Recap)

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

where 

• G = computation graph

• WORK(G) = sum of time(N), for all nodes N in G

• CPL(G) = length of a longest directed path in CG G, 
when adding up the execution times of all nodes in the 
path

• The above bounds are for greedy schedulers and an 
idealized model of P parallel processors

• There may be cases when the lower and upper bounds 
are not achievable
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Cases when Lower and Upper Bounds
approach each other

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

             Lower Bound                                  Upper Bound

Case 1:There’s lots of parallelism, WORK(G)/CPL(G) >> P

=> WORK(G)/P >> CPL(G)

=> WORK(G)/P ≤ TP ≤ WORK(G)/P + CPL(G)

=> TP   WORK(G)/P

Case 2: There’s little parallelism, WORK(G)/CPL(G) << P

=> WORK(G)/P << CPL(G)

=> CPL(G) ≤ TP ≤ CPL(G) + WORK(G)/P

=> TP   CPL(G)

≈"

≈"
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ArraySum1: Computing the sum of an array 
in parallel (Recap)

1. for ( int stride = 1; stride < X.length ; stride *= 2 ) {

2.   // size = number of additions to be performed in stride

3.   int size=ceilDiv(X.length,2*stride);

4.   finish for(int i = 0; i < size; i++)

5.     async {

6.       if ( (2*i+1)*stride < X.length )

7.         X[2*i*stride]+=X[(2*i+1)*stride]; 

8.     } // finish-for-async

9. } // for

10. 

11. // Divide x by y, and round up to next largest int

12. static int ceilDiv(int x, int y) { return (x+y-1) / y; }
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Reduction Tree Schema for computing 
Array Sum in parallel

• Define N = X.length

• WORK = N-1 = O(N)

• Critical path length (number of stages), CPL = O(log(N))
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ArraySum1 pre-pass when P < array length
1. // Start of pre-pass: compute P partial sums in parallel

2. finish for(int j = 0; j < P; j++) // Create P tasks

3.    async { 

4.      // Compute sum of A[j],A[j+P],... in task (processor) j

5.      // Any other decomposition into P partial sums is fine too

6.      for(int i = j; i < A.length; i += P) X[j] += A[i]; 

7.    } // finish-for-async

8. // End of pre-pass: now X[0..P-1] has P partial sums of array A

9. // Use ArraySum1 algorithm (slide 5) to obtain total sum

Complexity analysis

• Parallel time for pre-pass in lines 1-7 = O(N/P), where N = A.length

• Parallel time for ArraySum1 algorithm = O(log P)

• Total parallel time, T(N,P) = O(N/P + log P)
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ArraySum: Ideal Parallel Time as function of P

• Total parallel time, T(N,P) = N/P + log2(min(P,N)), depends on
• Input size, N
• Number of processors, P
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Goals for Today’s Lecture
• Recap of parallel complexity for ArraySum1

• Speedup, Efficiency, Amdahl’s Law

• Use of Abstract Performance Metrics
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Speedup Definitions
• Speedup(N,P) = T(N,1)/T(N,P)

—Factor by which the use of P processors speeds up execution time 
relative to 1 processor, for input size N

—For ideal executions without overhead, 1 <= Speedup(P) <= P

• Strong scaling
—Goal is linear speedup for a given input size 

– When Speedup(N,P) = k*P, for some constant k, 0 < k < 1
—In practice, we may also see

– Speedup(P) < 1 (slowdown)
– Speedup(P) > P (super-linear speedup)

• Weak scaling
—Increase problem size to use processors more efficiently
—Define Weak-Speedup(N(P),P) = T(N(P),1)/T(N(P),P), where input size 

N(P) increases with P

10
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ArraySum: Speedup as function of P
• Speedup(N,P) = T(N,1)/T(N,P) = N/(N/P + log2(min(P,N)))

• Asymptotically, Speedup(N,P) --> N/log2N, as P --> infinity
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Efficiency Metrics
• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a 
parallel program uses available processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—N1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to 

obtain efficient parallelism
—A larger value of N1/2 indicates that the problem is harder to 

parallelize efficiently
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ArraySum: Efficiency as function of P
• Common approach: choose largest number of processors that 

delivers efficiency above a given limit e.g., 50%
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Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be 

executed sequentially for a given input size N, then the best speedup 
that can be obtained for that program is Speedup(N,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on 
parallel execution time
—  CPL >= q * T(N,1)
—  T(N,P) >= q * T(N,1) 
—  Speedup(N,P) = T(N,1)/T(N,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program 
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account
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Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)
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Goals for Today’s Lecture
• Recap of parallel complexity for ArraySum1

• Speedup, Efficiency, Amdahl’s Law

• Use of Abstract Performance Metrics
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HJ Abstract Performance Metrics 
(Recap)

• Basic Idea
—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to perf.addLocalOps()
—Programmer inserts calls of the form, perf.addLocalOps(N), 

within a step to indicate abstraction execution of N 
application-specific abstract operations 
– e.g., floating-point ops, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

• Enabled by selecting “Show Abstract Execution Metrics” in 
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract 

metrics are printed at end of program execution with 
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)
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Where should perf.addLocalOps() calls 
be placed? 

• Answer: It depends. In HW2, we asked you to count 
each call to combine() as 1 unit, but here’s the 
general idea …

• We'll say that a cost function Cost(n) is “order f(n)”, 
or simply “O(f (n))” (read “Big-O of f (n))”) if
—Cost-X(n) < factor * f (n), for sufficiently large n, 
for some constant factor

• Examples:
—Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
—Cost-B(n) = 3*n2 + 10  Cost-B is O(n2)
—Cost-C(n) = 2n   Cost-C is O(2n)
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Famous "Complexity Classes"

• O (1)	
 	
 constant-time        (head, tail)

• O (log n)	
	
 logarithmic      (binary search)

• O (n)	
 	
 linear    (vector multiplication)

• O (n * log n) 	
 "n logn"                (sorting)

• O (n2)	
 	
 quadratic      (matrix addition)

• O (n3)	
 	
 cubic    (matrix multiplication)

• nO(1)	
 	
 polynomial         (…many! …)

• 2O(n)	
 	
 exponential (guess password)
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Where should perf.addLocalOps() calls 
be placed? 

• Focus on key metric of interest in your algorithm

• Don’t count operations that are incidental to your 
algorithm
—They can be important implementation 
considerations, but may not contribute to 
understanding your algorithm

• Since big-O analysis does not care about differences 
within a constant factor, you can just use a unit cost 
as a stand-in for a constant number of operations


