
COMP 322: Fundamentals of
Parallel Programming

Lecture 4: Parallel Speedup, Efficiency,
Amdahl’s Law

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 4 18 January 2012

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Recap of parallel complexity for ArraySum1

• Speedup, Efficiency, Amdahl’s Law

• Use of Abstract Performance Metrics

2

COMP 322, Spring 2012 (V.Sarkar)3

Lower and Upper Bounds for Greedy Schedulers
(Recap)

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

where

• G = computation graph

• WORK(G) = sum of time(N), for all nodes N in G

• CPL(G) = length of a longest directed path in CG G,
when adding up the execution times of all nodes in the
path

• The above bounds are for greedy schedulers and an
idealized model of P parallel processors

• There may be cases when the lower and upper bounds
are not achievable

COMP 322, Spring 2012 (V.Sarkar)4

Cases when Lower and Upper Bounds
approach each other

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

 Lower Bound Upper Bound

Case 1:There’s lots of parallelism, WORK(G)/CPL(G) >> P

=> WORK(G)/P >> CPL(G)

=> WORK(G)/P ≤ TP ≤ WORK(G)/P + CPL(G)

=> TP WORK(G)/P

Case 2: There’s little parallelism, WORK(G)/CPL(G) << P

=> WORK(G)/P << CPL(G)

=> CPL(G) ≤ TP ≤ CPL(G) + WORK(G)/P

=> TP CPL(G)

≈"

≈"

COMP 322, Spring 2012 (V.Sarkar)5

ArraySum1: Computing the sum of an array
in parallel (Recap)

1. for (int stride = 1; stride < X.length ; stride *= 2) {

2. // size = number of additions to be performed in stride

3. int size=ceilDiv(X.length,2*stride);

4. finish for(int i = 0; i < size; i++)

5. async {

6. if ((2*i+1)*stride < X.length)

7. X[2*i*stride]+=X[(2*i+1)*stride];

8. } // finish-for-async

9. } // for

10.

11. // Divide x by y, and round up to next largest int

12. static int ceilDiv(int x, int y) { return (x+y-1) / y; }

COMP 322, Spring 2012 (V.Sarkar)6

Reduction Tree Schema for computing
Array Sum in parallel

• Define N = X.length

• WORK = N-1 = O(N)

• Critical path length (number of stages), CPL = O(log(N))

COMP 322, Spring 2012 (V.Sarkar)7

ArraySum1 pre-pass when P < array length
1. // Start of pre-pass: compute P partial sums in parallel

2. finish for(int j = 0; j < P; j++) // Create P tasks

3. async {

4. // Compute sum of A[j],A[j+P],... in task (processor) j

5. // Any other decomposition into P partial sums is fine too

6. for(int i = j; i < A.length; i += P) X[j] += A[i];

7. } // finish-for-async

8. // End of pre-pass: now X[0..P-1] has P partial sums of array A

9. // Use ArraySum1 algorithm (slide 5) to obtain total sum

Complexity analysis

• Parallel time for pre-pass in lines 1-7 = O(N/P), where N = A.length

• Parallel time for ArraySum1 algorithm = O(log P)

• Total parallel time, T(N,P) = O(N/P + log P)

COMP 322, Spring 2012 (V.Sarkar)8

ArraySum: Ideal Parallel Time as function of P

• Total parallel time, T(N,P) = N/P + log2(min(P,N)), depends on
• Input size, N
• Number of processors, P

0"

500"

1000"

1500"

2000"

2500"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Parallel"Time"(N=1024)" Parallel"Time"(N=2048)"

P

T(N,P)

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Recap of parallel complexity for ArraySum1

• Speedup, Efficiency, Amdahl’s Law

• Use of Abstract Performance Metrics

9

COMP 322, Spring 2012 (V.Sarkar)

Speedup Definitions
• Speedup(N,P) = T(N,1)/T(N,P)

—Factor by which the use of P processors speeds up execution time
relative to 1 processor, for input size N

—For ideal executions without overhead, 1 <= Speedup(P) <= P

• Strong scaling
—Goal is linear speedup for a given input size

– When Speedup(N,P) = k*P, for some constant k, 0 < k < 1
—In practice, we may also see

– Speedup(P) < 1 (slowdown)
– Speedup(P) > P (super-linear speedup)

• Weak scaling
—Increase problem size to use processors more efficiently
—Define Weak-Speedup(N(P),P) = T(N(P),1)/T(N(P),P), where input size

N(P) increases with P

10

COMP 322, Spring 2012 (V.Sarkar)11

ArraySum: Speedup as function of P
• Speedup(N,P) = T(N,1)/T(N,P) = N/(N/P + log2(min(P,N)))

• Asymptotically, Speedup(N,P) --> N/log2N, as P --> infinity

P

Speedup(N,P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(N=1024)" Speedup"(N=2048)"

COMP 322, Spring 2012 (V.Sarkar)

Efficiency Metrics
• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a
parallel program uses available processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—N1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to

obtain efficient parallelism
—A larger value of N1/2 indicates that the problem is harder to

parallelize efficiently

12

COMP 322, Spring 2012 (V.Sarkar)13

ArraySum: Efficiency as function of P
• Common approach: choose largest number of processors that

delivers efficiency above a given limit e.g., 50%

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Efficiency"(N=1024)" Efficiency"(N=2048)"

COMP 322, Spring 2012 (V.Sarkar)14

Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be

executed sequentially for a given input size N, then the best speedup
that can be obtained for that program is Speedup(N,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on
parallel execution time
— CPL >= q * T(N,1)
— T(N,P) >= q * T(N,1)
— Speedup(N,P) = T(N,1)/T(N,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account

COMP 322, Spring 2012 (V.Sarkar)15

Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Recap of parallel complexity for ArraySum1

• Speedup, Efficiency, Amdahl’s Law

• Use of Abstract Performance Metrics

16

COMP 322, Spring 2012 (V.Sarkar)17

HJ Abstract Performance Metrics
(Recap)

• Basic Idea
—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to perf.addLocalOps()
—Programmer inserts calls of the form, perf.addLocalOps(N),

within a step to indicate abstraction execution of N
application-specific abstract operations
– e.g., floating-point ops, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

• Enabled by selecting “Show Abstract Execution Metrics” in
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

COMP 322, Spring 2012 (V.Sarkar)18

Where should perf.addLocalOps() calls
be placed?

• Answer: It depends. In HW2, we asked you to count
each call to combine() as 1 unit, but here’s the
general idea …

• We'll say that a cost function Cost(n) is “order f(n)”,
or simply “O(f (n))” (read “Big-O of f (n))”) if
—Cost-X(n) < factor * f (n), for sufficiently large n,
for some constant factor

• Examples:
—Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
—Cost-B(n) = 3*n2 + 10 Cost-B is O(n2)
—Cost-C(n) = 2n Cost-C is O(2n)

COMP 322, Spring 2012 (V.Sarkar)19

Famous "Complexity Classes"

• O (1)	
 	
 constant-time (head, tail)

• O (log n)	
	
 logarithmic (binary search)

• O (n)	
 	
 linear (vector multiplication)

• O (n * log n) 	
 "n logn" (sorting)

• O (n2)	
 	
 quadratic (matrix addition)

• O (n3)	
 	
 cubic (matrix multiplication)

• nO(1)	
 	
 polynomial (…many! …)

• 2O(n)	
 	
 exponential (guess password)

COMP 322, Spring 2012 (V.Sarkar)20

Where should perf.addLocalOps() calls
be placed?

• Focus on key metric of interest in your algorithm

• Don’t count operations that are incidental to your
algorithm
—They can be important implementation
considerations, but may not contribute to
understanding your algorithm

• Since big-O analysis does not care about differences
within a constant factor, you can just use a unit cost
as a stand-in for a constant number of operations

