
COMP 322 Spring 2013

Lab 10: Java Locks
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Sugar Login: ssh your-netid@sugar.rice.edu and then login with your password

Linux Tutorial visit http://www.rcsg.rice.edu/tutorials/

IMPORTANT: Please refer to the tutorial on Linux and SUGAR from Lab 5, as needed. Also, if you edit
files on a PC or laptop, be sure to transfer them to SUGAR before you compile and execute them (otherwise
you may compile and execute a stale/old version on SUGAR).

As in past labs, create a text file named lab 10 written.txt in the lab 10 directory, and enter your timings
and observations there.

1 Sorted Linked List Example using Java’s Synchronized Methods

NOTE: see slides for Lectures 25 and 26 for a recap of Java’s synchronized statement and locking libraries
respectively.

Download the lab10.zip archive from the course web page. It consist of six files: SyncList.java, ListDriver.java,
ListCounter.java, ListSet.java, ListTest.java, RWMix.java. Of these, you only need to focus on
SyncList.java, which contains a thread-safe implementation of a sorted linked list that supports contains(),
add() and remove() methods. The default driver options repeatedly calls these three methods with a dis-
tribution that aims for 98% read operations (calls to contains()), 1% add operations, and 1% remove
operations. Since all three methods are declared as synchronized in SyncList.java, all calls will be serial-
ized on a single SyncList object.

For this section, your tasks are as follows:

1. Compile all Java files by issuing the command, javac *.java.

2. Execute the SyncList class with the default driver options for 1, 2, 4, 8 threads, by issuing the follow-
ing commands:
java ListDriver -t 1 -b ListTest -s SyncList
java ListDriver -t 2 -b ListTest -s SyncList
java ListDriver -t 4 -b ListTest -s SyncList
java ListDriver -t 8 -b ListTest -s SyncList

In the above command, -t is used to specify the number of threads. The -b option is used to specify
the benchmark used to measure the performance of the list implementation. We currently use the
ListTest.java benchmark. The -s option is used to specify the list implementation.

Observe the performance reported next to the text “Operations per seconds:”. Since this is a through-
put metric, a larger value will indicate better performance. How does the performance vary with number
of threads? Can you explain why this happens? Write your observations in lab 10 written.txt.

1 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
http://www.rcsg.rice.edu/tutorials/


COMP 322
Spring 2013

Lab 10: Java Locks

2 Use of Coarse-Grained Locking instead of Java’s Synchronized
Methods

The goal of this section is to replace the use of Java’s synchronized method in SyncList.java by explicit
locking instead. For this section, your tasks are as follows:

1. Make a copy of SyncList.java named CoarseList.java.

2. Replace two occurrences of “SyncList” by “CoarseList” in CoarseList.java.

3. Allocate a single instance of ReentrantLock when creating an instance of CoarseList. See slides 19
and 20 in Lecture 26 for this step, and the remaining steps below.

4. Replace the three occurrences of “synchronized” by appropriate calls to lock() and unlock(). Re-
member to use a try-finally block as follows to ensure that unlock() is always called:

lock.lock();
try { ... }
finally { lock.unlock(); }

5. Compile all Java files by issuing the command, javac *.java.

6. Execute the CoarseList class with the default driver options for 1, 2, 4, 8 threads, by issuing the
following commands:
java ListDriver -t 1 -b ListTest -s CoarseList
java ListDriver -t 2 -b ListTest -s CoarseList
java ListDriver -t 4 -b ListTest -s CoarseList
java ListDriver -t 8 -b ListTest -s CoarseList

How does the performance compare with the performance observed for SyncList? Write your obser-
vations in lab 10 written.txt.

3 Use of Read-Write Locks

The goal of this section is to replace the use of a ReentrantLock in CoarseList.java by a ReentrantReadWriteLock,
so as to leverage the fact that the majority of the operations (98% by default) are calls to contains() which
are read-only in nature. For this section, your tasks are as follows:

1. Make a copy of CoarseList.java named CoarseRWList.java.

2. Replace two occurrences of “CoarseList” by “CoarseRWList” in CoarseRWList.java.

3. Replace the instance of ReentrantLock by an instance of ReadWriteReentrantLock. See slides 26 and
27 in Lecture 26 for this step, and the remaining steps below.

4. Replace the calls to lock() by readLock.lock() or writeLock.lock() where appropriate. Likewise for
unlock().

5. Compile all Java files by issuing the command, javac *.java.

6. Execute the CoarseRWList class with the default driver options for 1, 2, 4, 8 threads, by issuing the
following commands:
java ListDriver -t 1 -b ListTest -s CoarseRWList

2 of 3



COMP 322
Spring 2013

Lab 10: Java Locks

java ListDriver -t 2 -b ListTest -s CoarseRWList
java ListDriver -t 4 -b ListTest -s CoarseRWList
java ListDriver -t 8 -b ListTest -s CoarseRWList

How does the performance compare with the performance observed for CoarseList? Write your
observations in lab 10 written.txt.

7. This example also allows for selection of different fractions of read (combine), add, and remove op-
erations. For practicality, it is important to use the same fraction for add and remove operations
(otherwise the list will become grow too large or too small). To see an increased benefit with read-
write locks, you can add the “-r 100 -a 0 -d 0” options to the driver program to make the fraction of
read operations 100% (an extreme case).

Now execute the following commands to compare the performance of CoarseList and CoarseRWList
on 8 threads with 100% read operations:
java ListDriver -t 8 -b ListTest -r 100 -a 0 -d 0 -s CoarseList
java ListDriver -t 8 -b ListTest -r 100 -a 0 -d 0 -s CoarseRWList

Write your observations in lab 10 written.txt.

4 Turning in your lab work

1. NOTE: there is no quiz for Lab 10.

2. Check that all the work for today’s lab is in the lab 10 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab 10/ and
issuing the following command, “zip -r lab 10.zip lab 10”.

4. Use the turn-in script to submit the contents of the lab 10.zip file as a new lab 10 directory in your
turnin repository as explained in Lab 1. You can always examine the most recent contents of your svn
repository by visiting https://svn.rice.edu/r/comp322/turnin/S13/your-netid.

3 of 3


	Sorted Linked List Example using Java's Synchronized Methods
	Use of Coarse-Grained Locking instead of Java's Synchronized Methods
	Use of Read-Write Locks
	Turning in your lab work 

