
COMP 322: Fundamentals of
Parallel Programming

Lecture 12: Barrier Synchronization

COMP 322 Lecture 12 8 February 2016

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu, shams.imam@twosigma.com

http://comp322.rice.edu/

1) Assuming n=9 and the input array below, perform a “half-iteration” of
the iterative averaging example by only filling in the blanks for odd
values of j in the myNew[] array (different from the real algorithm).
Recall that the computation is “myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;”

2) Will the contents of myVal[] and myNew[] change in further iterations?
No, this represents the converged value (equilibrium/fixpoint).
3) Write the formula for the final value of myNew[i] as a function of i and
n. In general, this is the value that we will get if m (= #iterations in
sequential for-iter loop) is large enough.
After a sufficiently large number of iterations, the iterated averaging
code will converge with myNew[i] = myVal[i] = i / (n+1)

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Solution to Worksheet #11: One-dimensional
Iterative Averaging Example

2

index, j 0 1 2 3 4 5 6 7 8 9 10

myVal 0 0 0.2 0 0.4 0 0.6 0 0.8 0 1

myNew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Hello-Goodbye Forall Example (Pseudocode)
forall (0, m - 1, (i) -> {

 int sq = i*i; // NOTE: video used lookup(i) instead

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Sample output for m = 4
Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

3

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Question: how can we transform this code so as to ensure that all tasks
say hello before any tasks say goodbye?

• Statements in red below will need to be moved to solve this problem
 Hello from task with square = 0

Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

4

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Question: how can we transform this code so as to ensure that all tasks say hello
before any tasks say goodbye?

• Approach 1: Replace the forall loop by two forall loops, one for the hello’s and
one for the goodbye’s

— Problem: Need to communicate local sq values from first forall to the second
1. // APPROACH 1

2. forall (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. });

6. forall (0, m - 1, (i) -> {

7. System.out.println(“Goodbye from task with square = “ + sq);

8. });

5

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Hello-Goodbye Forall Example (contd)
• Question: how can we transform this code so as to ensure that all tasks say hello

before any tasks say goodbye, without having to change local ?

• Approach 2: insert a “barrier” (“next” statement) between the hello’s and goodbye’s
1. // APPROACH 2
2. forallPhased (0, m - 1, (i) -> {
3. int sq = i*i;
4. System.out.println(“Hello from task with square = “ + sq);
5. next(); // Barrier
6. System.out.println(“Goodbye from task with square = “ + sq);
7. });

• next è each forall iteration waits at barrier until all iterations arrive
(previous phase is completed), after which the next phase can start

—Scope of next is the closest enclosing forall statement
—If a forall iteration terminates before executing “next”, then the other iterations

don’t wait for it
—Special case of “phaser” construct (will be discussed later in class)

6

Phase 0

Phase 1

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Impact of barrier on scheduling forall
iterations

 next() operation is
modeled in the
Computation Graph
using signal and
wait edges

Four
forall
iterations,
each with
a next()
barrier Phase 0 Phase 1

i=0 //A1
i=1 //A2
i=2 //A3
i=3 //A4

SIG

SIG

SIG

WAIT

SIG
WAIT

WAIT

WAIT

next
signal edges

wait edges

7

next() = SIG + WAIT

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

forallPhased API’s in HJlib
(http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html)

• static void forallPhased(int s0, int e0,
edu.rice.hj.api.HjProcedure<java.lang.Integer> body)

• static <T> void
forallPhased(java.lang.Iterable<T> iterable,
edu.rice.hj.api.HjProcedure<T> body)

• static void next()

• NOTE:
—All forallPhased API’s include an implicit finish at

the end (just like a regular forall)
—Calls to next() are only permitted in forallPhased(),

not in forall()

8

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Observation 1: Scope of synchronization for “next”
barrier is its closest enclosing forall statement

1. forallPhased (0, m - 1, (i) -> {
2. println(“Starting forall iteration ” + i);
3. next(); // Acts as barrier for forall-i
4. forallPhased (0, n - 1, (j) -> {
5. println(“Hello from task (“ + i + “,” + j + “)”);
6. next(); // Acts as barrier for forall-j
7. println(“Goodbye from task (“ + i + “,” + j + “)”);
8. } // forall-j
9. next(); // Acts as barrier for forall-i
10. println(“Ending forall iteration ” + i);
11.}); // forall-i

9

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Observation 2: If a forall iteration terminates before
“next”, then other iterations do not wait for it

1. forallPhased (0, m - 1, (i) -> {
2. forseq (0, i, (j) -> {
3. // forall iteration i is executing phase j
4. System.out.println("(" + i + "," + j + ")");
5. next();
6. });
7. });

• Outer forall-i loop has m iterations, 0…m-1
• Inner sequential j loop has i+1 iterations, 0…i
• Line 4 prints (task,phase) = (i, j) before performing a next operation.
• Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then

terminates. Iteration i = 1 of the forall-i loop prints (1,0), performs a next,
prints (1,1), performs a next, and then terminates. And so on.

10

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Barrier Matching for previous example
• Iteration i=0 of the forall-i

loop prints (0, 0) in Phase 0,
performs a next, and then
ends Phase 1 by terminating.

• Iteration i=1 of the forall-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1)
in Phase 1, performs a next,
and then ends Phase 2 by
terminating.

• And so on until iteration i=8
ends an empty Phase 8 by
terminating

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
 | | | | | | | |
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
 | | | | | | | |
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | | |
 | (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
 | | | | | | | |
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | |

 | (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
 | | | | | | |
 end ----- next ----- next ----- next ----- next ----- next ----- next

 | | | | | |
 | (3,3) (4,3) (5,3) (6,3) (7,3)

 | | | | | |
 end ----- next ----- next ----- next ----- next ----- next

 | | | | |
 | (4,4) (5,4) (6,4) (7,4)

 | | | | |
 end ----- next ----- next ----- next ----- next

 | | | |
 | (5,5) (6,5) (7,5)

 | | | |
 end ----- next ----- next ----- next

 | | |
 | (6,6) (7,6)

 | | |
 end ----- next ----- next

 | |
 | (7,7)

 | |
 end ----- next

 |
 end

i=0…7 are forall iterations

(i,j) = println output

next = barrier operation

end = termination of a forall iteration

11

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Observation 3: Different forall iterations may perform
“next” at different program points

1. forallPhased (0, m-1, (i) -> {
2. if (i % 2 == 1) { // i is odd
3. oddPhase0(i);
4. next();
5. oddPhase1(i);
6. } else { // i is even
7. evenPhase0(i);
8. next();
9. evenPhase1(i);
10. } // if-else
11. }); // forall
• Barrier operation synchronizes odd-numbered iterations at line 4 with

even-numbered iterations in line 8

• One reason why barriers are “less structured” than finish, async, future

12

Barriers are not statically
scoped — matching barriers
may come from different
program points, and may
even be in different methods!

