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Worksheet #37: Branching in SIMD code

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Consider SIMD execution of the following pseudocode with 8 threads.  
Assume that each call to doWork(x) takes x units of time, and ignore 
all other costs.  How long will this program take when executed on 8 
GPU cores, taking into consideration the branching issues discussed 
in Slide 9? 

1. int tx = threadIdx.x; // ranges from 0 to 7 
2. if (tx % 2 = 0) { 
3.   S1: doWork(1); // Computation S1 takes 1 unit of time 
4. }  
5. else { 
6.   S2: doWork(2); // Computation S2 takes 2 units of time 
7. } 

Solution: 3 units of time (WORK=24, CPL=3) 



Summary: CPUs and GPUs have 
fundamentally different design philosophies 
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Single CPU core Multiple GPU processors 

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used 
for non-graphics applications that exhibit large amounts of data 
parallelism and require large amounts of “streaming” throughput 
⇒ SIMD parallelism within a Streaming Multiprocessor (SM), and SPMD 
parallelism across SMs
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 GPU Design Idea #2: SIMD “lock-
step”execution w/ branching (Recap)
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Non branching code; 

if(flag > 0){ /* branch */ 
  x = exp(y); 
  y = 2.3*x; 
}  
else{ 
  x = sin(y); 
  y = 2.1*x; 
} 

Non branching code;

ALU ALU ALU ALU ALU ALU ALU ALU 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F
✓ ✓ X ✓ ✓ X X X
✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs 
traverse all branches [ executing NOPs if necessary ]  

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



GPU example: Supercomputing roadmap at 
Oak Ridge National Laboratory
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Since clock-rate scaling ended in 2003, 
HPC performance has been achieved 
through increased parallelism.  Jaguar 
scaled to 300,000 cores.

Titan and beyond deliver hierarchical 
parallelism with very powerful nodes.  MPI 
plus thread level parallelism through 
OpenACC or OpenMP plus vectors

Jaguar: 2.3 PF 
Multi-core CPU 
7 MW

Titan: 27 PF 
Hybrid GPU/CPU 
9 MW

2010 2012 2017 2022

OLCF5: 5-10x Summit 
~20 MWSummit:  5-10x Titan 

Hybrid GPU/CPU 
10 MW

Source: Buddy Bland, OLCF Project Director,  
ASCAC presentation, 2014 
 



Partitioned Global Address Space 
Languages

• Global address space 
—one-sided communication (GET/PUT) 

• Programmer has control over performance-critical factors  
—data distribution and locality control 
—computation partitioning 
—communication placement 

• Data movement and synchronization as language primitives 
—amenable to compiler-based communication optimization 

• Global view rather than local view
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simpler than msg passing

lacking in thread-based models 

HJ places help with locality 
control but not data distribution

Global View Local View (4 processes)



Partitioned Global Address Space (PGAS) 
Languages

• Unified Parallel C   (extension of C) 
• Now available as UPC++ library for C++11 programmers 

• Coarray Fortran      (extension of Fortran) 

• Titanium                  (extension of early version of Java) 

• Related efforts: newer languages developed since 2003 as part of 
the DARPA High Productivity Computing Systems (HPCS) program 
—IBM: X10 (starting point for Habanero-Java) 
—Cray: Chapel 
—Oracle/Sun: Fortress
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Data Distributions
• Motivation for distributions: partitioning and mapping arrays elements to 

processors 

• In HJlib, distributions are used to map computations to places for affinity 

• For Unified Parallel C (UPC), distributions map data onto distributed-memory 
parallel machines  (Thread = Place)

Like shared vs. private/local data in HJ, except now each datum also 
has an “affinity” with a specific thread/place, hence the P in PGAS
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Unified Parallel C (UPC) 
Execution Model

• Multiple threads working independently in a SPMD fashion 
—MYTHREAD specifies thread index (0..THREADS-1) 

– Like MPI processes and ranks 
—# threads specified at compile-time or program launch time 

• Partitioned Global Address Space (different from MPI) 

• Threads synchronize as necessary using 
—synchronization primitives 
—shared variables
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Shared and Private Data
• Static and dynamic memory allocation of each type of data 

• Shared objects placed in memory based on affinity 
—shared scalars have affinity to thread 0 

– here, a scalar means a non-array instance of any type 
(could be a struct, for example) 

—by default, elements of shared arrays are allocated “round 
robin” among memory modules co-located with each thread 
(cyclic distribution)
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A One-dimensional Shared Array
Consider the following data layout directive

shared int y[2 * THREADS + 1]; 

For THREADS = 3, we get the following cyclic layout

Thread 0

y[3]

y[0]

y[4]

y[1]

Thread 1

zy[5]

y[2]

Thread 2

y[6]
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A Multi-dimensional Shared Array

Thread 0

A[0][0]
A[1][0]
A[2][0]
A[3][0]

A[0][1]
A[1][1]
A[2][1]
A[3][1]

A[0][2]
A[1][2]
A[2][2]
A[3][2]

Thread 1 Thread 2

shared int A[4][THREADS]; 

  

For THREADS = 3, we get the following cyclic layout
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Shared and Private Data
Consider the following data layout directives 

shared int x; // x has affinity to thread 0 
shared int y[THREADS];
int z;                   // private 

For THREADS = 3, we get the following layout
Thread 0

x

z

y[0]

z

y[1]

Thread 1

zz

y[2]

Thread 2
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block size

Controlling the Layout of Shared Arrays

a[0]

a[1]

a[6]

a[7]

a[2]

a[3]

a[8]

a[9]

a[4]

a[5]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

Thread 0 Thread 1 Thread 2

• Can specify a blocking factor for shared arrays to obtain block-
cyclic distributions 
—default block size is 1 element ⇒ cyclic distribution 

• Shared arrays are distributed on a block per thread basis, round 
robin allocation of block size chunks  

• Example layout using block size specifications 
—e.g., shared [2] int a[16]
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Blocking Multi-dimensional Data
• Consider the data declaration 

—shared [3] int A[4][THREADS];  

• When THREADS = 4, this results in the following data layout

A[0][0]
A[0][1]
A[0][2]
A[3][0]
A[3][1]
A[3][2]

A[0][3]
A[1][0]
A[1][1]
A[3][3]

A[1][2]
A[1][3]
A[2][0]

A[2][1]
A[2][2]
A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

The mapping is not pretty for most blocking factors 
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A Simple UPC Program: Vector Addition
 //vect_add.c 
 #include <upc_relaxed.h>  

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() {  
   int i; 
  for(i=0; i<N; i++) 

      if (MYTHREAD == i % THREADS)          
         v1plusv2[i]=v1[i]+v2[i];  

} 
 

Iteration #:

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Each thread executes each 
iteration to check if it has work

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)



 A More Efficient Vector Addition
 //vect_add.c 
 #include <upc_relaxed.h>  

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() {  
   int i; 

    for(i = MYTHREAD; i < N;  
        i += THREADS) 
      v1plusv2[i]=v1[i]+v2[i];  

} 
 

Iteration #:

Each thread executes only its own iterations
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Worksharing with upc_forall

• Distributes independent iterations across threads 

• Simple C-like syntax and semantics 
—upc_forall(init; test; loop; affinity) 

• Affinity is used to enable locality control 
—usually, map iteration to thread where the iteration’s data 

resides 

• Affinity can be  
—an integer expression (with implicit mod on NUMTHREADS), or 

a  
—reference to (address of) a shared object
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Work Sharing + Affinity with upc_forall
• Example 1: explicit data affinity using shared references 

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; &a[i])
  // Execute iteration i at a[i]’s place
  a[i] = b[i] * c[i];

• Example 2: implicit data affinity with integer place expressions  
shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; i)
  // Execute iteration i at place i%THREADS
  a[i] = b[i] * c[i];

• Both yield a round-robin distribution of iterations
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Work Sharing + Affinity with upc_forall

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSiteration i

• Example 3: implicit affinity by chunks 
shared [25] int a[100],b[100], c[100]; 
int i; 
upc_forall (i=02 i<100; i++; (i*THREADS)/100) 
    a[i] = b[i] * c[i]; 

• Assuming 4 threads, the distribution of upc_forall iterations is as follows:
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Synchronization in UPC
• Barriers  (blocking) 

—upc_barrier 
– like “next” operation in HJ 

• Split-phase barriers (non-blocking) 
—upc_notify 

– like explicit (non-blocking) signal on an HJ phaser 
—upc_wait 

– upc_wait is like explicit wait on an HJ phaser 

• Lock primitives 
—void upc_lock(upc_lock_t *l) 
—int upc_lock_attempt(upc_lock_t *l) // like trylock() 
—void upc_unlock(upc_lock_t *l)

21 COMP 322, Spring 2016 (V. Sarkar, S. Imam)



C++ 
Compiler 

UPC++ 
Program

UPC++ 
Template 
Header 

Files

Linker

UPC++ 
idioms are 
translated  

to C++

Object 
file w. 

runtime 
calls

Exe

GASNet

System 
Libs

UPC++ 
Runtime

• Leverage	
  C++	
  standards	
  and	
  
compilers	
  
- Implement	
  UPC++	
  as	
  a	
  C++	
  template	
  
library	
  

- C++	
  templates	
  can	
  be	
  used	
  as	
  a	
  
mini-­‐language	
  to	
  extend	
  C++	
  syntax	
  

• Many	
  new	
  features	
  in	
  C++11	
  
- E.g.,	
  type	
  inference,	
  variadic	
  
templates,	
  lambda	
  functions,	
  r-­‐value	
  
references	
  	
  

- C++	
  11	
  is	
  well-­‐supported	
  by	
  major	
  
compilers

UPC++ library: a “Compiler-Free” Approach 
for PGAS (source: LBNL)
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Habanero-UPC++: Extending UPC++ with 
Task Parallelism (LBNL, Rice)

1. finish ( [capture_list1] () {
2.  // Any Habanero dynamic tasking constructs
3.     . . . // finish, async, asyncAwait
4.     . . . 
5. // Remote function invocation
6. asyncAt ( destPlace, [capture_list2] ( ) { 
7. Statements;
8. });
9. . . . 
10. // Remote copy with completion signal in result
11. asyncCopy ( src, dest, count, ddf=NULL );
12.   . . .
13. asyncAwait(ddf, ….); // local
14.}); // waits for all local/remote async’s to complete
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“HabaneroUPC++: A Compiler-free PGAS Library.” V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, V. Sarkar, PGAS 2015.



Example code structure from an application 
run on ORNL supercomputer (LSMS)
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MPI version: 
// Post MPI_IRecv() calls 
. . . 

// Post MPI_ISend() calls 

. . . 

// Perform all MPI_Wait()  

// calls   
. . . 

// Perform tasks 

// Each task needs results  

// from two MPI_IRecv() calls 
. . . async(…) 

Habanero-UPC++ version: 
// Issue one-sided 
// asyncCopy() calls 
. . . 
// Issue data-driven tasks  
// in any order without any  
// wait/barrier operations 
hcpp::asyncAwait( 
      result1, result2,  
      [=]() { task body }); 
. . . 
  

MPI version waits for all IRecv() 
calls to complete before executing 
all tasks (like a barrier)

Habanero-UPC++ version specifies that 
each asyncAwait() task can complete 
when its two results become available 
from asyncCopy() calls


