
COMP 322: Fundamentals of
Parallel Programming

Lecture 36: Partitioned Global Address Space
(PGAS) programming models

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

vsarkar@rice.edu, shams@rice.edu

comp322.rice.edu

COMP 322 Lecture 36 15 April 2016

25

Worksheet #37: Branching in SIMD code

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Consider SIMD execution of the following pseudocode with 8 threads.
Assume that each call to doWork(x) takes x units of time, and ignore
all other costs. How long will this program take when executed on 8
GPU cores, taking into consideration the branching issues discussed
in Slide 9?

1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }

Solution: 3 units of time (WORK=24, CPL=3)

Summary: CPUs and GPUs have
fundamentally different design philosophies

DRAM

Co
Ca A A A A A A A A A A A A A A A A

Streaming Multiprocessor

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Single CPU core Multiple GPU processors

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used
for non-graphics applications that exhibit large amounts of data
parallelism and require large amounts of “streaming” throughput
⇒ SIMD parallelism within a Streaming Multiprocessor (SM), and SPMD
parallelism across SMs

3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

 GPU Design Idea #2: SIMD “lock-
step”execution w/ branching (Recap)

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Non branching code;

if(flag > 0){ /* branch */
 x = exp(y);
 y = 2.3*x;
}  
else{
 x = sin(y);
 y = 2.1*x;
}

Non branching code;

ALU ALU ALU ALU ALU ALU ALU ALU

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F
✓ ✓ X ✓ ✓ X X X
✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GPU example: Supercomputing roadmap at
Oak Ridge National Laboratory

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Since clock-rate scaling ended in 2003,
HPC performance has been achieved
through increased parallelism. Jaguar
scaled to 300,000 cores.

Titan and beyond deliver hierarchical
parallelism with very powerful nodes. MPI
plus thread level parallelism through
OpenACC or OpenMP plus vectors

Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

2010 2012 2017 2022

OLCF5: 5-10x Summit
~20 MWSummit: 5-10x Titan

Hybrid GPU/CPU
10 MW

Source: Buddy Bland, OLCF Project Director,
ASCAC presentation, 2014

Partitioned Global Address Space
Languages

• Global address space
—one-sided communication (GET/PUT)

• Programmer has control over performance-critical factors
—data distribution and locality control
—computation partitioning
—communication placement

• Data movement and synchronization as language primitives
—amenable to compiler-based communication optimization

• Global view rather than local view

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

simpler than msg passing

lacking in thread-based models

HJ places help with locality
control but not data distribution

Global View Local View (4 processes)

Partitioned Global Address Space (PGAS)
Languages

• Unified Parallel C (extension of C)
• Now available as UPC++ library for C++11 programmers

• Coarray Fortran (extension of Fortran)

• Titanium (extension of early version of Java)

• Related efforts: newer languages developed since 2003 as part of
the DARPA High Productivity Computing Systems (HPCS) program
—IBM: X10 (starting point for Habanero-Java)
—Cray: Chapel
—Oracle/Sun: Fortress

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Data Distributions
• Motivation for distributions: partitioning and mapping arrays elements to

processors

• In HJlib, distributions are used to map computations to places for affinity

• For Unified Parallel C (UPC), distributions map data onto distributed-memory
parallel machines (Thread = Place)

Like shared vs. private/local data in HJ, except now each datum also
has an “affinity” with a specific thread/place, hence the P in PGAS

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1

P
ar

ti
ti

on
ed

G

lo
ba

l
ad

dr
es

s
sp

ac
e

Thread 1

P
ri

va
te

Sp

ac
es

8 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Unified Parallel C (UPC)
Execution Model

• Multiple threads working independently in a SPMD fashion
—MYTHREAD specifies thread index (0..THREADS-1)

– Like MPI processes and ranks
—# threads specified at compile-time or program launch time

• Partitioned Global Address Space (different from MPI)

• Threads synchronize as necessary using
—synchronization primitives
—shared variables

9 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Shared and Private Data
• Static and dynamic memory allocation of each type of data

• Shared objects placed in memory based on affinity
—shared scalars have affinity to thread 0

– here, a scalar means a non-array instance of any type
(could be a struct, for example)

—by default, elements of shared arrays are allocated “round
robin” among memory modules co-located with each thread
(cyclic distribution)

10 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

A One-dimensional Shared Array
Consider the following data layout directive

shared int y[2 * THREADS + 1];

For THREADS = 3, we get the following cyclic layout

Thread 0

y[3]

y[0]

y[4]

y[1]

Thread 1

zy[5]

y[2]

Thread 2

y[6]

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

A Multi-dimensional Shared Array

Thread 0

A[0][0]
A[1][0]
A[2][0]
A[3][0]

A[0][1]
A[1][1]
A[2][1]
A[3][1]

A[0][2]
A[1][2]
A[2][2]
A[3][2]

Thread 1 Thread 2

shared int A[4][THREADS];

For THREADS = 3, we get the following cyclic layout

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Shared and Private Data
Consider the following data layout directives

shared int x; // x has affinity to thread 0
shared int y[THREADS];
int z; // private

For THREADS = 3, we get the following layout
Thread 0

x

z

y[0]

z

y[1]

Thread 1

zz

y[2]

Thread 2

13 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

block size

Controlling the Layout of Shared Arrays

a[0]

a[1]

a[6]

a[7]

a[2]

a[3]

a[8]

a[9]

a[4]

a[5]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

Thread 0 Thread 1 Thread 2

• Can specify a blocking factor for shared arrays to obtain block-
cyclic distributions
—default block size is 1 element ⇒ cyclic distribution

• Shared arrays are distributed on a block per thread basis, round
robin allocation of block size chunks

• Example layout using block size specifications
—e.g., shared [2] int a[16]

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Blocking Multi-dimensional Data
• Consider the data declaration

—shared [3] int A[4][THREADS];

• When THREADS = 4, this results in the following data layout

A[0][0]
A[0][1]
A[0][2]
A[3][0]
A[3][1]
A[3][2]

A[0][3]
A[1][0]
A[1][1]
A[3][3]

A[1][2]
A[1][3]
A[2][0]

A[2][1]
A[2][2]
A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

The mapping is not pretty for most blocking factors

15 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

A Simple UPC Program: Vector Addition
 //vect_add.c
 #include <upc_relaxed.h>  

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N];

 
void main() {  
 int i; 
 for(i=0; i<N; i++)

 if (MYTHREAD == i % THREADS)
 v1plusv2[i]=v1[i]+v2[i];  

}

Iteration #:

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Each thread executes each
iteration to check if it has work

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

 A More Efficient Vector Addition
 //vect_add.c
 #include <upc_relaxed.h>  

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N];

 
void main() {  
 int i;

 for(i = MYTHREAD; i < N;
 i += THREADS)
 v1plusv2[i]=v1[i]+v2[i];  

}

Iteration #:

Each thread executes only its own iterations

17 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Worksharing with upc_forall

• Distributes independent iterations across threads

• Simple C-like syntax and semantics
—upc_forall(init; test; loop; affinity)

• Affinity is used to enable locality control
—usually, map iteration to thread where the iteration’s data

resides

• Affinity can be
—an integer expression (with implicit mod on NUMTHREADS), or

a
—reference to (address of) a shared object

18 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Work Sharing + Affinity with upc_forall
• Example 1: explicit data affinity using shared references

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; &a[i])
 // Execute iteration i at a[i]’s place
 a[i] = b[i] * c[i];

• Example 2: implicit data affinity with integer place expressions
shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; i)
 // Execute iteration i at place i%THREADS
 a[i] = b[i] * c[i];

• Both yield a round-robin distribution of iterations
19 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Work Sharing + Affinity with upc_forall

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSiteration i

• Example 3: implicit affinity by chunks
shared [25] int a[100],b[100], c[100];
int i;
upc_forall (i=02 i<100; i++; (i*THREADS)/100)
 a[i] = b[i] * c[i];

• Assuming 4 threads, the distribution of upc_forall iterations is as follows:

20 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Synchronization in UPC
• Barriers (blocking)

—upc_barrier
– like “next” operation in HJ

• Split-phase barriers (non-blocking)
—upc_notify

– like explicit (non-blocking) signal on an HJ phaser
—upc_wait

– upc_wait is like explicit wait on an HJ phaser

• Lock primitives
—void upc_lock(upc_lock_t *l)
—int upc_lock_attempt(upc_lock_t *l) // like trylock()
—void upc_unlock(upc_lock_t *l)

21 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

C++
Compiler

UPC++ 
Program

UPC++
Template
Header

Files

Linker

UPC++
idioms are
translated

to C++

Object
file w.

runtime
calls

Exe

GASNet

System
Libs

UPC++
Runtime

• Leverage	
 C++	
 standards	
 and	

compilers	

- Implement	
 UPC++	
 as	
 a	
 C++	
 template	

library	

- C++	
 templates	
 can	
 be	
 used	
 as	
 a	

mini-­‐language	
 to	
 extend	
 C++	
 syntax	

• Many	
 new	
 features	
 in	
 C++11	

- E.g.,	
 type	
 inference,	
 variadic	

templates,	
 lambda	
 functions,	
 r-­‐value	

references	
 	

- C++	
 11	
 is	
 well-­‐supported	
 by	
 major	

compilers

UPC++ library: a “Compiler-Free” Approach
for PGAS (source: LBNL)

22 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Habanero-UPC++: Extending UPC++ with
Task Parallelism (LBNL, Rice)

1. finish ([capture_list1] () {
2. // Any Habanero dynamic tasking constructs
3. . . . // finish, async, asyncAwait
4. . . .
5. // Remote function invocation
6. asyncAt (destPlace, [capture_list2] () {
7. Statements;
8. });
9. . . .
10. // Remote copy with completion signal in result
11. asyncCopy (src, dest, count, ddf=NULL);
12. . . .
13. asyncAwait(ddf, ….); // local
14.}); // waits for all local/remote async’s to complete

23 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

“HabaneroUPC++: A Compiler-free PGAS Library.” V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, V. Sarkar, PGAS 2015.

Example code structure from an application
run on ORNL supercomputer (LSMS)

24 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

MPI version:
// Post MPI_IRecv() calls
. . .

// Post MPI_ISend() calls

. . .

// Perform all MPI_Wait()

// calls
. . .

// Perform tasks

// Each task needs results

// from two MPI_IRecv() calls
. . . async(…)

Habanero-UPC++ version:
// Issue one-sided
// asyncCopy() calls
. . .
// Issue data-driven tasks
// in any order without any
// wait/barrier operations
hcpp::asyncAwait(
 result1, result2,
 [=]() { task body });
. . .

MPI version waits for all IRecv()
calls to complete before executing
all tasks (like a barrier)

Habanero-UPC++ version specifies that
each asyncAwait() task can complete
when its two results become available
from asyncCopy() calls

