
COMP 322: Fundamentals of
Parallel Programming

Lecture 38: Review of Modules 2 & 3
(Lectures 20-37)

COMP 322 Lecture 38 22 April 2016

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

vsarkar@rice.edu, shams@rice.edu

comp322.rice.edu

1

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

HJ isolated construct (Lecture 20)
isolated (() -> <body>);

• Isolated construct identifies a critical section
• Two tasks executing isolated constructs are guaranteed to perform them in mutual

exclusion
èIsolation guarantee applies to (isolated, isolated) pairs of constructs, not to (isolated, non-

isolated) pairs of constructs

• Isolated constructs may be nested
— An inner isolated construct is redundant

• Blocking parallel constructs are forbidden inside isolated constructs
—Isolated constructs must not contain any parallel construct that performs a blocking

operation e.g., finish, future get, next

—Non-blocking async operations are permitted, but isolation guarantee only applies to creation
of async, not to its execution

• Isolated constructs can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks — which we will learn later)

can lead to a deadlock, if used incorrectly

2

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Object-based isolation (Lecture 20)
isolated(obj1, obj2, …, () -> <body>)

• In this case, programmer specifies list of objects for which isolation is required
• Mutual exclusion is only guaranteed for instances of isolated constructs that

have a common object in their object lists
—Serialization edges are only added between isolated steps with at least one common

object (non-empty intersection of objstec lists)

—Standard isolated is equivalent to “isolated(*)” by default i.e., isolation across all
objects

• Inner isolated constructs are redundant — they are not allowed to “add” new
objects

3

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. return isolatedWithReturn(this, () -> {

6. if (parent == null) { parent = n; return true; }
7. else return false; // return true if n became parent
8. });
9. } // makeParent
10. void compute() {
11. for (int i=0; i<neighbors.length; i++) {
12. final V child = neighbors[i];
13. if (child.makeParent(this))
14. async(() -> { child.compute(); });
15. }
16. } // compute
17. } // class V
18. . . .
19. root.parent = root; // Use self-cycle to identify root
20. finish(() -> { root.compute(); });
21. . . .

Parallel Spanning Tree Algorithm using
object-based isolation (Worksheet 20)

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference<V> parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. // compareAndSet() is a more efficient implementation of
6. // object-based isolation
7. return parent.compareAndSet(null, n);
8. } // makeParent
9. void compute() {
10. for (int i=0; i<neighbors.length; i++) {
11. final V child = neighbors[i];
12. if (child.makeParent(this))
13. async(() -> { child.compute(); }); // escaping async
14. }
15. } // compute
16. } // class V
17. . . .
18. root.parent = root; // Use self-cycle to identify root
19. finish(() -> { root.compute(); });
20. . . .

Parallel Spanning Tree Algorithm using
AtomicReference (Lecture 21)

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

java.util.concurrent.AtomicInteger methods and their
equivalent isolated constructs (Lecture 21)

• Body Level One
— Body Level Two

– Body Level Three
Body Level Four

Body Level Five

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Methods in java.util.concurrent.AtomicInteger class and their
equivalent HJ object-isolated statements. Variable v refers to an
AtomicInteger object in column 2 and to a standard non-atomic Java
object in column 3. val refers to a field of type int.

java.util.concurrent. AtomicReference methods and
their equivalent isolated statements (Lecture 21)

• Body Level One
— Body Level Two

– Body Level Three
Body Level Four

Body Level Five

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Methods in java.util.concurrent.AtomicReference class and their
equivalent HJ object-isolated statements. Variable v refers to an
AtomicReference object in column 2 and to a standard non-atomic
Java object in column 3. ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter for the
reference.

Read-Write Object-based isolation in HJ
(Lecture 21)

isolated(readMode(obj1),writeMode(obj2), …, () -> <body>);

• Programmer specifies list of objects as well as their read-write modes for which isolation is
required

• Not specifying a mode is the same as specifying a write mode (default mode = read + write)
• Mutual exclusion is only guaranteed for instances of isolated statements that have a non-empty

intersection in their object lists such that one of the accesses is in writeMode
• Sorted List example
1. public boolean contains(Object object) {
2. return isolatedWithReturn(readMode(this), () -> {
3. Entry pred, curr;
4. ...
5. return (key == curr.key);
6. });
7. }
8.
9. public int add(Object object) {
10. return isolatedWithReturn(writeMode(this), () -> {
11. Entry pred, curr;
12. ...
13. if (...) return 1; else return 0;
14. });
15. }

8 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Prefix Sum (Scan) Problem Statement
(Lecture 22)

Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that inclusive prefix sums can be computed sequentially in
O(n) time …

// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

• … and so can exclusive prefix sums

9 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Summary of Parallel Prefix Sum
Algorithm (Lecture 22)

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
— Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond
computing the sum of array elements

• Parallel Prefix Sum can be used for any operation that is
associative (need not be commutative)
— In contrast, finish accumulators required the operator to be

both associative and commutative

10 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Implementing Parallel Filter using
Parallel Prefix Sum (Lecture 22)

1. Parallel map to compute a bit-vector for true elements (can use Java
streams)
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output (can use Java streams)
 output [17, 11, 13, 19, 24]

  

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
}

1. // Start of main thread

2. sum1 = 0 sum2 = 0; // sum1 & sum2 are static fields

3. Thread t1 = new Thread(() -> {

4. // Child task computes sum of lower half of array

5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. });

7. t1.start();

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. // Parent task waits for child task to complete (join)

11. t1.join();

12. return sum1 + sum2;

Two-way Parallel Array Sum
using Java Threads (Lecture 23)

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Deadlock example with Java
synchronized statement (Lecture 23)

• The code below can deadlock if leftHand() and rightHand() are called concurrently from
different threads
— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 synchronized(lock1) {
 synchronized(lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 public void rightHand() {
 synchronized(lock2) {
 synchronized(lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

13 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Avoiding Dynamic Order Deadlocks
(Lecture 23)

• The solution is to induce a lock ordering
— For example, use an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {
 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock;  

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount;  
 secondLock = toAccount;  
 }  
 else {  
 firstLock = toAccount;  
 secondLock = fromAccount;  
 }  
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }  

 }

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

What if you want to wait for shared state to satisfy a desired
property? (Circular Bounded Buffer Example. Lecture 24)

1. public synchronized void insert(Object item) { // producer
2. // TODO: wait till count < BUFFER SIZE
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. // TODO: notify consumers
7. }
8.
9. public synchronized Object remove() { // consumer
10. Object item;
11. // TODO: wait till count > 0
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. // TODO: notify producers
16. return item;
17.}

15 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

01
2

3

count=4
out=0
in=4

4

insert() & remove() with wait/notify methods
for Circular Bounded Buffer (Lecture 24)

1.public synchronized void insert(Object item) {
2. while (count == BUFFER SIZE) wait();
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. notify();
7.}
8.
9.public synchronized Object remove() {
10. Object item;
11. while (count == 0) wait();
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. notify();
16. return item;
17.}

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Linearizability of Concurrent Objects
(Summary, Lecture 25)

Concurrent object
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
— Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at some

distinct point in time between its invocation and return.
• An execution is linearizable if we can choose instantaneous points

that are consistent with a sequential execution in which methods are
executed at those points

• An object is linearizable if all its possible executions are linearizable

17 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Example 2: is this execution
linearizable? (Lecture 25)

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

18 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Task T2

not linearizable

Worksheet #26 solution: use of tryLock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to
tryLock (see slide 8) instead of synchronized. Your goal is to write a correct
implementation that never deadlocks, unlike the buggy version below (which
can deadlock). Assume that each Account object already contains a reference
to a ReentrantLock object dedicated to that object e.g., from.lock() returns the
lock for the from object. Sketch your answer below using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. while (true) {
3. // assume that trylock() does not throw an exception
4. boolean fromFlag = from.lock.trylock();
5. if (!fromFlag) continue; //acquire from.lock
6. boolean toFlag = to.lock.trylock();
7. if (!toFlag) { from.lock.unlock(); continue; }
8. try { from.subtractFromBalance(amount);
9. to.addToBalance(amount); break; }
10. finally { from.lock.unlock(); to.lock.unlock(); }
11. } // while
12. }

19 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Liveness (Lecture 27)
• Liveness = a program’s ability to make progress in a timely

manner

• Is termination a requirement for liveness?

• some applications are designed to be non-terminating

• Different levels of liveness guarantees (from weaker to stronger)
1. Deadlock freedom (can’t have all threads blocked)
2. Livelock freedom (can’t have all threads doing “busy work” with

no progress)
3. Starvation freedom (can’t have any thread blocked forever)
4. Bounded wait (can’t have any thread blocked for an unbounded

time)

20 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Worksheet #27 solution:
Liveness Guarantees

21

 /** Atomically adds delta to the current value.
 *
 * @param delta the value to add
 * @return the previous value
 */
 public final int getAndAdd(int delta) {
 for (;;) {
 int current = get();
 int next = current + delta;
 if (compareAndSet(current, next))
 return current;
 }
 }
Assume that multiple tasks call getAndAdd() repeatedly in parallel. Can this
implementation of getAndAdd() lead to a) deadlock, b) livelock, or c) starvation?
Write and explain your answer below.

SOLUTION: c) starvation is possible, but a) deadlock and b) livelock are not possible
NOTE 1: a terminating parallel program execution exhibits none of a), b), or c).

Actor states
l New: Actor has been created

l e.g., email account has been
created, messages can be received

l Started: Actor can process
messages

l e.g., email account has been
activated

l Terminated: Actor will no longer
processes messages

l e.g., termination of email account
after graduation

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Actor Life Cycle (Lecture 28)

22

1. finish(() -> {
2. int threads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring =  

 new ThreadRingActor[threads];
5. for(int i=threads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();
8. if (i < threads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. ring[threads-1].nextActor(ring[0]);
12. ring[0].send(numberOfHops);
13. }); // finish  

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

ThreadRing Example (Lecture 28)

23

3 1

0

2

14. class ThreadRingActor
15. extends Actor<Integer> {
16. private Actor<Integer> nextActor;
17. private final int id;
18. ...
19. public void nextActor( 

 Actor<Object> nextActor) {...}

21. protected void process(Integer n) {
22. if (n > 0) {
23. println("Thread-" + id +
24. " active, remaining = " + n);
25. nextActor.send(n - 1);
26. } else {
27. println("Exiting Thread-"+ id);
28. nextActor.send(-1);
29. exit();
30. } } }

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

State Diagram for Extended Actors with
Pause-Resume (Lecture 29)

24

l Paused state: actor will not process subsequent messages until it is
resumed

l Resume actor when it is safe to process the next message
l Messages can accumulate in mailbox when actor is in PAUSED state (s

in NEW state)

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Worksheet #29:
Analyzing Parallelism in an Actor Pipeline

25

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit(); //actor will exit after returning from process()
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. } // process()
 

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

...

Consider a three-stage pipeline of actors (as in slide 5), set up so that
P0.nextStage = P1, P1.nextStage = P2, and P2.nextStage = null. The process()
method for each actor is shown below. Assume that 100 non-null messages are
sent to actor P0 after all three actors are started, followed by a null message.
What will the total WORK and CPL be for this execution? Recall that each actor
has a sequential thread.

Solution: WORK = 300, CPL = 102

Worksheet #30: Characterizing Solutions to
the Dining Philosophers Problem

For the five solutions studied in today’s lecture, indicate in the table below which of the following
conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked (neither thinking nor eating)
2. Livelock: when all philosopher tasks are executing but ALL philosophers are starved (never get to

eat)
3. Starvation: when one or more philosophers are starved (never get to eat)
4. Non-Concurrency: when more than one philosopher cannot eat at the same time, even when

resources are available

26 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Deadlock Livelock Starvation Non-
concurrency

Solution 1:  
synchronized

Yes (72/73) No (68/73) Yes (50/73) Yes (22/73)

Solution 2:  
tryLock/unLock

No (73/73) Yes (45/73) Yes (67/73) Yes (15/73)

Solution 3:  
isolated

No (71/73) No (72/73) Yes (26/73) Yes (67/73)

Solution 4:  
object-based
isolation

No (71/73) No (67/73) Yes (64/73) No (64/73)

Solution 5:  
semaphores w/
FIFO queues

No (71/73) No (71/73) No (57/73) No (71/73)

Places in HJlib (Lecture 32)
here() = place at which current task is executing
numPlaces() = total number of places (runtime constant)

Specified by value of p in runtime option:
HjSystemProperty.numPlaces.set(p);

place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”
<place-expr>.id() returns the id of the place as an int
asyncAt(P, () -> S)
• Creates new task to execute statement S at place P
• async(() -> S) is equivalent to asyncAt(here(), () -> S)
• Main program task starts at place(0)

Note that here() in a child task refers to the place P at which the child task is
executing, not the place where the parent task is executing

27 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Example of 4:2 option on an 8-core node
(4 places w/ 2 workers per place, Lecture 32)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
asyncAt(place(0), () -> S1);
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3);
asyncAt(place(1), () -> S4);
asyncAt(place(1), () -> S5);

asyncAt(place(2), () -> S6);
asyncAt(place(2), () -> S7);
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);
asyncAt(place(3), () -> S10);

28 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Block Distribution (Lecture 32)
• A block distribution splits the index region into contiguous

subregions, one per place, while trying to keep the subregions as
close to equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example: dist.get(index) for a block distribution on 4 places, when
index is in the range, 0…15

29 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Cyclic Distribution (Lecture 32)
• A cyclic distribution “cycles” through places 0 … place.MAX

PLACES − 1 when spanning the input region
• Cyclic distributions can improve the performance of parallel loops

that exhibit load imbalance
• Example: dist.get(index) for a cyclic distribution on 4 places, when

index is in the range, 0…15

30 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Worksheet #32 solution: impact of distribution
on parallel completion time (rather than locality)

1. public void sampleKernel(
2. int iterations, int numChunks, Distribution dist) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish(() -> {
5. forseq (0, numChunks - 1, (jj) -> {
6. asyncAt(dist.get(jj), () -> {
7. doWork(jj);
8. // Assume that time to process chunk jj = jj units
9. });
10. });
11. });
12. } // for iter
13. } // sample kernel

•Assume an execution with n places, each place with one worker thread
•Will a block or cyclic distribution for dist have a smaller abstract
completion time, assuming that all tasks on the same place are serialized
with one worker per place?

Answer: Cyclic distribution because it leads to better load balance (locality
was not a consideration in this problem)

31 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Our First MPI Program  
(mpiJava version, Lecture 33)

1. import mpi.*;
2. class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args);
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11. }

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

32 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4. MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5. MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8. Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9. Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10. System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. ...

Worksheet #33 solution: MPI send and receive

Question: In the space below, indicate what values you expect the print
statement in line 10 to output (assuming the program is invoked with 2
processes).

33 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Answer: Nothing! The program will deadlock due to mismatched tags, with
process 0 blocked at line 4, and process 1 blocked at line 8.

Simple Irecv() example (Lecture 34)
• The simplest way of waiting for completion of a single non-

blocking operation is to use the instance method Wait() in the
Request class, e.g:
// Post a receive (like a “communication async”)
Request request = Irecv(intBuf, 0, n, MPI.INT,
 MPI.ANY_SOURCE, 0) ;

// Do some work while the receive is in progress
…

// Wait for message to arrive (like a future get)
Status status = request.Wait() ;

// Do something with data received in intBuf
…

• The Wait() operation is declared to return a Status object. In the
case of a non-blocking receive operation, this object has the
same interpretation as the Status object returned by a blocking
Recv() operation.

34 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Collective Communications (Lecture 34)
• A popular feature of MPI is its family of collective communication operations.
• Each collective operation is defined over a communicator (most often,

MPI.COMM_WORLD)
— Each collective operation contains an implicit barrier. The operation completes

and execution continues when all processes in the communicator perform the same
collective operation.

— A mismatch in operations results in deadlock e.g.,
Process 0: MPI.Bcast(...)
Process 1: MPI.Bcast(...)
Process 2: MPI.Gather(...)

• A simple example is the broadcast operation: all processes invoke the operation,
all agreeing on one root process. Data is broadcast from that root.
void Bcast(Object buf, int offset, int count, Datatype type, int root)

– Broadcast a message from the process with rank root to all processes of
the group

35 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Worksheet #34: MPI Gather

1. MPI.Init(args) ;
2. int myrank = MPI.COMM_WORLD.Rank() ;
3. int numProcs = MPI.COMM_WORLD.Size() ;
4. int size = ...;
5. int[] sendbuf = new int[size];
6. int[] recvbuf = new int[???];
7. . . . // Each process initializes sendbuf
8. MPI.COMM_WORLD.Gather(sendbuf, 0, size, MPI.INT,
9. recvbuf, 0, size, MPI.INT,
10. 0 /*root*/);
11. . . .
12. MPI.Finalize();

36 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Indicate what value should be
provided instead of ??? in line 6 to
minimize space, and how it should
depend on myrank.

Solution: myrank == 0 ? (size * numProcs) : 0

Execution of a CUDA program
(Lecture 35)

Host Code
(small number of threads)

. . .

. . .

Device Kernel
(large number of threads)

Host Code
(small number of threads)

Device Kernel
(large number of threads)

Host Code
(small number of threads)

37 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Explicit host-device communication

Explicit host-device communication

Explicit host-device communication

Explicit host-device communication

Block 0 Block 1 . . .

SIMD SIMD

 SIMD “lock-step”execution for threads in
the same block (Lecture 35)

38 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Non branching code;

if(flag > 0){ /* branch */
 x = exp(y);
 y = 2.3*x;
}  
else{
 x = sin(y);
 y = 2.1*x;
}

Non branching code;

ALU ALU ALU ALU ALU ALU ALU ALU

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F
✓ ✓ X ✓ ✓ X X X
✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Worksheet #35: Branching in SIMD code

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Consider SIMD execution of the following pseudocode with 8 threads
in a block. Assume that each call to doWork(x) takes x units of time,
and ignore all other costs. How long will this program take when
executed on 8 GPU cores, taking into consideration the branching
issues discussed in Slide 9?

1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }

Solution: 3 units of time (WORK=24, CPL=3)

39

Unified Parallel C (UPC)
Execution Model (Lecture 36)

• Multiple threads working independently in a SPMD fashion
—MYTHREAD specifies thread index (0..THREADS-1)

– Like MPI processes and ranks
—# threads specified at compile-time or program launch time

• Partitioned Global Address Space (different from MPI)

• Threads synchronize as necessary using
—synchronization primitives
—shared variables

40 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Worksheet #36: UPC data distributions

1. shared int a[100],b[100], c[100];
2. int i;
3. upc_forall (i=0; i<100; i++; (i*THREADS)/100)
4. a[i] = b[i] * c[i];

41 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

In the following example from Lecture 36 slide 20, assume that each UPC array is
distributed by default across threads with a cyclic distribution. In the space
below, identify an iteration of the upc_forall construct for which all array accesses
are local, and an iteration for which all array accesses are non-local (remote).

Assume 2 <= THREADS < 100. Explain your answer in each case.

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], c[0], all

of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], c[1], all

of which are located remotely at thread 1

0 1 2 3 4 5 6 . . .index

index owner in
2-thread case

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

How did COMP 322 work out this
semester?

• What worked (relatively) well
—Course software: Java 8, HJlib, AutoGrader, Abstract Metrics
—Course material: Worksheets, labs, videos, quizzes, lecture handouts
—Organization: Piazza, reduced grading delays compared to previous years

• What was challenging
—Performance variability for Java on your laptops vs. NOTS vs. AutoGrader

• What we would like to improve in the future
—Extend lecture handouts
—New programming examples for labs and homeworks
—Improved debugging in AutoGrader e.g., automatic datarace detection

• Help us improve COMP 322 in the future!
—Send us your suggestions for improvement
—Serve as a TA next year
—Sign up (and get paid!) to work on improving course material and software

42

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Announcements
• Homework 5 due today (officially) with penalty-free extension until

12noon on May 2nd
—Any remaining slip days can be applied past May 2nd

• Exam 2 is a scheduled final exam to be held during 9am - 12noon
on Tuesday, May 3rd, in Herzstein Hall Auditorium
— Final exam will cover material from Lectures 20 - 37
— A practice exam & solution will be made available this weekend

• Group office hours will be held next week in Herzstein 212 at the
following times
• 1pm - 3pm, Monday, April 25th
• 1pm - 3pm, Wednesday, April 27th
• 1pm - 3pm, Friday, April 29th

43

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Acknowledgments
• Co-instructor

—Shams Imam

• Graduate TAs
—Max Grossman (Head TA), Prasanth
Chatarasi, Arghya Chatterjee, Yuhan
Peng, Jonathan Sharman

• Undergraduate TAs
—Prudhvi Boyapalli, Peter Elmers, Nicholas
Hanson-Holtry, Ayush Narayan, Timothy
Newton, Alitha Partono, Tom Roush,
Hunter Tidwell, Bing Xue

• Administrative Staff
—Annepha Hurlock, Bel Martinez

44

“Education is
what survives

when what has
been learned

has been
forgotten”

B.F. Skinner

Have
a great
summer!!

