Comp 311
~unctional Programming

Eric Allen, Robert “Corky” Cartwright
Sagnak Tasirlar



My Background

* Rice PhD, Computer Science

* Experience in distributed computing, language design and
implementation, web services, natural language
processing, machine learning

* Vice President, Engineering at Two Sigma Investments
* Quantitative Software Engineering

* Machine Learning

e Distributed Computing



Course Overview

* An Introduction to Functional Programming
* Tuesdays and Thursdays 8AM-9:15AM

o Office hours: TBA



Course Mechanics

* Course website: https://wiki.rice.edu/confluence/
display/PARPROG/COMP311

* Syllabus, lectures and homework assignments
are posted there

* |ecture topics are subject to change

e Course mailing list: comp311@rice.edu



https://wiki.rice.edu/confluence/display/PARPROG/COMP311
mailto:comp311@rice.edu

Online Course Discussion

* Piazza https://piazza.com/class/ineqj88uylu3|3

 We will make a best effort to answer questions
posted on this page in a timely manner

e Thereisno SLA

e Bring your questions to class and office hours



Course Overview

* No required textbook
 We will draw from a variety of sources

* Coursework consists primarily of weekly homework
assignments

* Make sure you do these!

* Missing even one assignment will significantly
impact your grade



Homework Assignments

* Think of the assignments in this class as short
essays

 Focus as much on style as you would for an essay

* 50% of a homework grade is based on clarity and
style

e 50% on correctness



Homework Assignments

* There will be two weeks between assignment and
due date

* No slip days, no extensions (just like the real world)

* Aiming for roughly 10 hours of coursework per
week

* Block this time off now and make a priority of
respecting it



Homework Assignments

* Assignments are published on Thursdays

e Start on assignments early so that you have time to
ask questions at class and at office hours



Homework Assignments

e Assignments will be programming exercises in
Scala

 We will cover the parts of Scala needed for the
assignments in class



Homework Assignments

* You have the option of DrScala and Intellid IDEA for
assignments

* |nstalled on all Rice systems and available tor
download from the course website

* We will use turnin for all assignments

e |nstructions on the course website



What Is Functional
Programming’?



Early Models of
Computation

* Juring Machines (Turing)
e Type-0 Grammars (Chomsky)

 The Lambda Calculus (Church)

* ... and many others



Early Models of
Computation

Turing Machines (Turing)
Type-0 Grammars (Chomsky)
The Lambda Calculus (Church)
... and many others

To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

e Suggests there is a deeper structure to the nature of
computation



Early Models of
Computation

- Turing Machines (Turing)
Type-0 Grammars (Chomsky)
The Lambda Calculus (Church)
... and many others

To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

e Suggests there is a deeper structure to the nature of
computation



Turing Machines

Processor > Tape

 Processor is a finite state machine that loads and stores
memory cells

e Juring coined the term "compute”™ and introduced the
notion of storage

 Many programs, languages, and computer architectures
are heavily influenced by this model (and its derivates: Von
Neumann, etc.)



Early Models of
Computation

Turing Machines (Turing)

Type-0 Grammars (Chomsky)

- The Lambda Calculus (Church)
... and many others

To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

e Suggests there is a deeper structure to the nature of
computation



The Lambda Calculus

A calculus consists of a set of rules tor rewriting symbols

An attempt to rebuild all of mathematics on the notion of
functions and applications

There iIs no mutation in the lambda calculus

Every program consists solely of applications of
functions to arguments (which are also functions)

Applications of functions return values (which are also
functions)



What Is Functional
Programming”?

A style of programming inspired by the Lambda
Calculus as a foundational model of computation.



What Is Functional
Programming”?

e A style of programming that avoids side eftects

Credit Card # m > Digital Book

Card Charged




What Is Functional
Programming”?

e A style of programming that avoids side eftects

Credit Card # > > Digital Book
@Ch@ Side Effect




What Is Functional
Programming”?

e A style of programming that avoids side eftects

Credit Card # >

* All results of a computation are sent as output

_(Digital Book,
Charge Event)




Why Avoid Side Effects”

 Programs are easier to write: There are fewer interactions
between program components, enabling multiple programmers (or
a single programmer on multiple days) to work together more easily

 Programs are easier to read: Pieces of a program can be read
and understood In isolation

 Programs are easier to test: Less context needs to be built up
before calling a function to test it

 Programs are easier to debug: Problems can be isolated more
easily, and behavior is inherently deterministic

 Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler



Why Avoid Side Effects”

- Programs are easier to execute in parallel:
Because separate pieces of a computation do not
interact, it Is easy to compute them on separate
ProCcessors

- This Is an increasingly important consideration in
the era of multicore chips, big data, and
distributing computing

This advantage undermines an often cited
argument for mutation (efficiency)



What Is Functional
Programming”?

- A style of programming that emphasizes functions
as the basis of computation

 Functions are applied to arguments

+ Functions are passed as arguments to other
functions

- Functions are returned as values of applications



Why Emphasize Functions®

* Functions allow us to factor out common code
 DRY: Don't Repeat Yourselt
 Why Is this important?

* Passing functions as arguments is often the most
straightforward way to abide by DRY

* Returning functions as values is also important
for DRY



Why Emphasize Functions®

* Functions allow us to concisely package
computations and move them from one control
point to another

* Aids us with implementing and reasoning about
parallel and distributed programming (yet again)



A Word on Object-Oriented
Programming

* There is no tension between functional and object-
oriented programming

* |n many ways, they complement one another

e Scala was designed to integrate both styles of
programming



A New Paradigm

* Set aside what you've learned about programming

* The style we will practice might seem untamiliar at
first

* |nitially, the material will seem quite basic

 \We will build a solid foundation that will enable us
to explore advanced topics



A New Paradigm

* We will re-examine many things we've (partially)
learned

e Often in life, the way forward is to rethink our
assumptions

* Later, we can integrate what we've learned into
our larger body of knowledge



Qur First Exposure to
Computation:

Arithmetic



4+5=9



4 +5-9

expressions are reduced to values



EXpressions are Reduced to
Values

* Rules for a fixed set of operators:
*4+5-9

* 4-5m -1

* 4 x5 20

* 9/3~ 3

¢ 4% 16

e V4 2



EXpressions are Reduced to
Values

To reduce an operator applied to expressions, first
reduce the subexpressions, left to right:

(4+1)x(b+3)+~
5x(5b+3)~
5x 8r

40



EXpressions are Reduced to
Values

A precedence iIs defined on operators to help us
decide what to reduce next:

4+1x5+3~
4+5+3m

9+3m~

12



New Operations Often

Introduce New Types of Values
* 4+5-9

* 4-5m -]
* 4 x5~ 20
* 4/5~ 0.8
* 42 16

o 1m0



Old Operations on New Types of Values
Often Introduce Yet More New Types of
Values

1 4+



