
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 12, 2017



Class Methods

• Methods are functions defined in the body of a class 
definition. They have direct access to the members of a 
class instance

• Syntactically, they are placed between braces, after the 
class parameters



Class Methods

case class C(field1: Type1, ..., fieldN: TypeN) {
def m1(x11: TypeP11, ..., xK1: TypePk1): TypeR11 =

expr
...
def mJ(x1J: TypeP1J, ..., xKJ: TypePkJ): TypeR1J =

expr
}



Method Definitions

case class Coordinate(x: Int, y: Int) {
def magnitude = x*x + y*y

}



Applying a Class Method
• Given a class definition:

class C(p1: T1, ..., pk: Tk) { ...

def m(param1: T11, paramN: T1N): T = e

...

}

• To reduce the application of a method:

C(v1, ..., vk).m(arg1, ..., argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor parameters with constructor arguments and 
method parameters with method arguments



Applying a Class Method

Coordinate(5,3).magnitude() ↦

5*5 + 3*3 ↦

25 + 9 ↦

34



Compound Value Patterns

def dotProduct(c1: Coordinate, c2: Coordinate) = {
(c1, c2) match {

case (Coordinate(x1,y1), Coordinate(x2,y2)) => 
x1*x2 + y1*y2

}
}



Patterns in Assignments

Patterns in Scala may also be used for destructuring assignments:

def dotProduct(c1: Coordinate, c2: Coordinate) = {
val Coordinate(x1, y1) = c1
val Coordinate(x2, y2) = c2
x1*x2 + y1*y2

}



Singleton Objects



Singleton Objects

• Also, we often would like to organize identifiers and 
functions together into a single entity

• When compiling a Scala file, it is required that all 
constant and function definitions are placed inside a 
class or object 

• For this purpose, we can make use of singleton objects



Singleton Objects
object IncomeTax {

val cutoff0 = 0
val bracket0 = 0

val bracket1 = 100
val cutoff1 = 9075
...

def incomeTaxForBracket(income: Int, cutoff: Int, bracket: Int) = { 
require(income >= 0)
(income - cutoff) * bracket / divisor + incomeTax(cutoff)

} ensuring (_ >= 0)
}



Syntax for Singleton Objects

object Name {

valDefs*

functionDefs*
}



We Can Refer to the Constants and Functions 
in the Object Using Dot Notation

IncomeTax.bracket1

100 
↦



We Can Refer to the Constants and Functions 
in the Object Using Dot Notation

IncomeTax.incomeTax(100000)

21174 
↦



Homework



Homework Grading Criteria

• Style: 50%

• Correctness: 50%



Style of Program Code and 
Test Code 

• Clarity

• Comments

• Contracts

• Design Principles



Clarity: Is the Program Easy to 
Read?

• Is the program concise? 

“Make every word say.”
(Strunk and White, The Elements of Style)

• Are functions kept relatively small, with sub-parts 
broken up according to the problem domain? 

Think of the profit, revenue, and cost example from
Lecture 2



Clarity: Is the Program Easy to 
Read?

• Are the names of functions and variables syntactically 
consistent? 

• For instance, do they all use camelCase? 

• Are similar functions given names of similar length?



Clarity: Is the Program Easy to 
Read?

• Are names adequately descriptive and appropriate? 

• For example, using single letter names for public 
functions is not appropriate

• Are consistent metaphors used for functions that 
work together?



Clarity: Is the Program Easy to 
Read?

• Is the program consistent in its indentation and 
whitespace? 

• This can affect readability

• Is there appropriate spacing? 

• Code that is too close together can be hard to read



Comments

• Does each function include a statement of purpose? 

• Are the comments excessive? 

• Comments embedded in program should be used 
only for cases where it is not clear locally why the 
program is doing what it does 

• The reader should be expected to know the language 
the text is written in



Contracts

• Do the parameter types and return types of all functions and 
variables make sense? 

• Are require and ensuring clauses included when 
necessary? 

• Are the included require and ensuring clauses defined 
appropriately?

• Are requirements that cannot be expressed in require and 
ensuring clauses defined as documentation?



Design Principles

• Does the program stick to the constructs covered in 
class so far?

• Is the program purely functional?



Design Principles
• Does the program follow templates provided in class 

when appropriate?

• For instance, is the function body a simple algebraic 
expression? 

• Is it a series of if–else expressions breaking up 
sub-ranges? 

• Is it a match expression breaking up an abstract 
datatype?



Design Principles

• Does the program include abstractions to factor out 
common code? (DRY)

• Copy-and-paste coding should be strongly avoided

• Does the program avoid unnecessary complexity? 
(KISS)



Correctness

• Does the program compile?

• Do all student submitted tests pass? 

• Does the program include all entry points required by 
the assignment?

• Are all tests automated? Tests should indicate on their 
own that either they pass or fail



Correctness

• Example Tests: Are simple examples included in the 
tests showing how the function behaves under usually 
circumstances?

• Stress Tests: Are there additional tests ensuring that 
the function behaves appropriately when given extreme 
data values 

0, 1, -1, PositiveInfinity, 
NegativeInfinity, NaN, etc.



Correctness

• Persuasive Tests: Is there adequate coverage to 
convince the reader that the program behaves as 
expected?

• Does the program perform correctly when subjected to 
additional testing provided by the course staff?



Expected Test Structure

• All tests in a program should be captured in a test suite

• For each component of a program, there should be a 
corresponding test class

• For each function, there should be a corresponding test 
function

• For each test function, there should be multiple tests, 
checking both common and extreme cases



Example: Testing Our Theater 
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {

def testAttendance() = {
...

}
def testCost() = {

...
}
def testProfit() = {

...
}
def testRevenue() = {

...
}
def testMax() = {

...
}

}



Example: Testing Our Theater 
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {

def testAttendance() = {
assertEquals(120, attendance(500))
assertEquals(135, attendance(490))
assertEquals(165, attendance(470))
assertEquals(0, attendance(1000))
assertEquals(0, attendance(580))
assertEquals(2, attendance(579))
assertEquals(870, attendance(0))

}
...

}



Example: Testing Our Theater 
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {
...
def testRevenue() = {
assertEquals(0, revenue(0))
assertEquals(0, revenue(1000))
assertEquals(53550, revenue(510))

}
...

}



Using DrScala



DrScala

• Available from the course homepage:

https://comp311.rice.edu

• A lightweight development environment well-suited to 
the exercises we will do in this class

https://comp311.rice.edu/


Definitions PaneInteractions PaneOpen Files



Define your program in the definitions pane



A prompt to save your program after hitting the Compile button



Successful compilation reported
in the Compiler Output tab



Console output from running
a program printed here



We can interact with the functions
in our program directly in the 

interactions pane



Create a new JUnit TestCase
class



We are prompted for a name. Let’s
call it IncomeTaxTest



A new test class is created 



Note that this is not a case class



Ignore the extends clause for now



Ignore the import statements for now



The provided tests 
don’t do very much



All functions with names starting
with“test” are treated as tests



The assertTrue function is
available to us in our tests.



The optional String is
printed if the test fails.



The test fails if this
argument does not

reduce to true.



assertEquals fails if its two arguments are not equal

Add many more test functions



Hitting the Test button prompts us to compile



Agreeing to compile prompts us to save



A green bar indicates that all tests passed



A red bar indicates a
test failure



The failing test is 
highlighted in

yellow



To interact with our program, we use the Interactions Pane



We can enter arbitrary Scala expressions



The value our expression reduces to is displayed



As is its type



And the value is bound to a fresh identifier



The classes we have compiled in 
Definitions are in scope in Interactions



We can refer to previously bound
identifiers in subsequent 

expressions



We can also bind new identifiers
directly



And compute with them



We can also define new functions



For definitions that are not 
syntactically complete, we are given

a new line, indicated by a
vertical bar



The function is bound and
an arrow type is displayed



And we can refer to this
function in subsequent

expressions



We can click on the file to appear in Definitions



Files that have not been saved include an asterisk



Reset resets the Interactions session



Run executes Definitions


