
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 14, 2017

1

Homework 1

• Please submit your homework via the SVN / turnin
system, in a folder named hw_1

• The specific files to submit are defined in the
description for each assignments

• For each section, please turn in only your final program
resulting from completion of the section

• Think about overflow!

2

Please Restrict Your Homework Submission
to Features Covered in Class

3

Current Core Scala Features
• object

• case class

• val

• if / else

• match / case

• require, ensuring

• Int, Double, String

• Array, Tuples

• Arithmetic operators

• (In)equality operators

• Logical and / or

• assertEquals etc.

• λ-expressions (ensuring)

• Plus the stuff from today!

4

Please Restrict Your Homework Submission
to Features Covered in Class

These should be the only import statements you need:

import junit.framework.TestCase

import junit.framework.Assert._

(or equivalent imports auto-generated by your IDE for
your JUnit test class)

5

Type Checking

6

• So far, we have been rigorous about computation of
programs, but we have relied on intuition for static type
checking

• We can provide a static semantics for Core Scala along
with our dynamic semantics

Type Checking

7

The Substitution Model of
Type Checking

• To type check a value v, replace v with its value type

1.003 ⇒ Double

• To type check a constant c, reduce the defining expression of c to a static type T, then
replace all occurrences of c with T

pi = 3.14 ⇒

pi : Double

pi * radius * radius ⇒

Double * radius * radius

8

The Substitution Model of
Type Checking

• To type check a function definition:

• Type check the body of the definition, replacing all occurrences of each parameter with
the corresponding parameter type

• To type check the occurrence of a function name:

• Replace the name with an arrow type, where the parameter types of the function are to
the left of the arrow and the return type is to the right

square(x: Double): Double = x * x

square(3.14) ⇒

(Double → Double)(3.14)

9

The Substitution Model of
Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static types

• If the argument types match the corresponding
parameter types, reduce the application to the return
type

10

The Substitution Model of
Type Checking

square(3.14) ⇒

(Double → Double)(3.14) ⇒

(Double → Double)(Double) ⇒

Double

11

Methods and Operators

12

Syntactic Sugar For Binary
Methods

• We refer to methods that take one parameter (in
addition to the receiver) as binary methods

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def add(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

}

13

Syntactic Sugar For Binary
Methods

Coordinate(1,2).add(Coordinate(3,4))

↦
Coordinate(4,6)

14

Syntactic Sugar For Binary
Methods

• We can elide the dot in method calls on binary methods

• We can also elide the enclosing parentheses around the
sole argument

15

Syntactic Sugar For Binary
Methods

Coordinate(1,2) add Coordinate(3,4)

↦
Coordinate(4,6)

16

Operator Symbols

• Scala allows the use of operator symbols in method names

• In fact, operators are simply methods in Scala

1 + 2 → 3

1.+(2) → 3

17

Coordinate Custom +

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def +(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

}

18

Coordinate Custom +

Coordinate(1,2) + Coordinate(3,4)

↦
Coordinate(4,6)

19

Requires Clauses on Class
Constructors

case class Name(field1: Type1, …, fieldN: TypeN) {

require (boolean-expression)

• Checked on every constructor call

• Because case class instances are immutable, this ensures the
property holds for the lifetime of an instance

20

Equals on Case Classes

• The equals method on a case class instance checks for
structural equality with its argument:

Rational(4,6).equals(Rational(4,6)) ↦

true

21

Equals on Case Classes

• Note that equals is a binary method, and so we can also
write this expression as:

Rational(4,6) equals Rational(4,6) ↦

true

22

Equals on Case Classes

• Of course, the built in equals method does not check for
mathematical equality:

Rational(4,6) equals Rational(2,3) ↦

false

23

Equals on Case Classes

• Why is this definition of equality acceptable on case
classes?

• What other definition is available to us?

Rational(4,6) equals Rational(2,3) ↦

false

24

Short-Circuiting And and Or
Operators

• Just as we have defined a short-circuiting if-then-else
operator, we can define short-circuiting and/or
operators:

&& ||

• How do we define the static and dynamic semantics
of these operators?

• When are they useful?

25

Calling and Defining Parameterless
Methods Without Parentheses

def toString() = { … }

vs.

def toString = { … }

26

Calling and Defining Parameterless
Methods Without Parentheses

Rational(4,6).toString()

vs.

Rational(4,6).toString

27

The Uniform Access Principle

• Client code should not be affected by whether an
attribute is defined as a field or a method

• Only applies to pure (side-effect free) methods

• Can be strange even for some pure methods (what
are some examples?)

28

Abstract Datatypes

29

Abstract Datatypes

• Often, we wish to abstract over a collection of
compound datatypes that share common properties

• For example, we might wish to define an abstract
datatype for shapes, with separate case classes for each
of several shapes

• For this purpose, we define an abstract class and use
subclassing

30

Abstract Datatypes

abstract class Shape
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape

31

Recall Our Design Recipe
• Analysis: What are the objects in the problem domain? What data

types we will use to represent them?

• Contract: What is name of our functions and their parameters?
What are the requirements of the data they consume and produce?
What is the meaning of what our program computes?

• Repeat until we are confident in our program’s correctness

• Write some tests

• Sketch a function template

• Define the function

32

Recall Our Design Recipe

• Analysis: This is the stage where we would discover we wish to
model our problem domain with functions over an abstract datatype

• Contract: What contract holds for each function? Do additional
constraints and assurances hold for specific subclasses?

• Repeat until we are confident in our program’s correctness

• Write some tests: Same as before

• Sketch a function template: This needs re-examination

• Define the function

33

The Design Recipe for Abstract
Datatypes

• Our Function Template for computing with abstract
datatypes depends on answering the following
questions:

• Do I expect to eventually add more subclasses?

• Do I expect to eventually add more functions?

34

Case 1
We Expect Few New Functions

But Many New Variants

35

Case 1: We Expect Few New
Functions But Many New Variants

• This is a case that object-oriented programming handles well

• Classic example domains: GUI Programming, Productivity Apps,
Graphics, Games

• Declare an abstract method in our superclass and provide a concrete
definition for each sub-class

a.k.a.,

The Union Pattern (for the datatype definitions)

The Template Method Pattern (for the function definitions)

36

Abstract Datatypes

abstract class Shape {
def area: Double

}

37

case class Circle(radius: Double) extends Shape {
val pi = 3.14

def area = pi * radius * radius

}

Abstract Datatypes

38

case class Square(side: Double) extends Shape {

def area = side * side

}

Abstract Datatypes

39

case class Rectangle(length: Double, width: Double)
extends Shape {

def area = length * width

}

Abstract Datatypes

40

How Do Abstract Classes Affect
Our Type Checking Rules?

• When type checking a class definition, ensure that all
abstract methods declared in the superclass are actually
defined, with compatible method types

• When type checking a collection of class definitions,
ensure that there are no cycles in the class hierarchy!

41

How Do Abstract Classes Affect
Our Type Checking Rules?

• If a method is called on a receiver whose static type is
an abstract class, extract an arrow type from the
declaration (just as with a definition in a concrete class)

expr.area ↦

Shape.area ↦

() → Double

42

Type Checking Arguments to a
Method Call

• The static types of an argument might no longer be an
exact match:

(Let us set aside the concrete definitions of makeLikeMe
for awhile)

abstract class Shape {
def area: Double

def makeLikeMe(that: Shape): Shape
}

43

Now Consider a Call to
Matcher With Concrete Types

Circle(1).makeLikeMe(Circle(2)) ⇒

Circle.makeLikeMe(Circle) ⇒

(Shape → Shape)(Circle)

And now we are stuck…

44

Recall The Substitution Model
of Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static types

• If the argument types match the corresponding
parameter types, reduce the application to the return
type

45

Subtyping
• We need to widen our definition of matching a type to

include subtyping

• A class is a subtype of the class it extends

• Subtyping is Reflexive:

A <: A

• Subtyping is Transitive:

If A <: B and B <: C then A <: C

46

Subtyping

• All types are a subtype of type Any

• Type Nothing is a subtype of all types

• There is no value with value type Nothing

47

Recall The Substitution Model
of Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static types

• If the argument types are subtypes of the
corresponding parameter types, reduce the
application to the return type

48

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor
parameters with constructor arguments and method
parameters with method arguments

49

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Find the body of m in C and reduce to that,
replacing constructor parameters with constructor
arguments and method parameters with method
arguments

50

The Body of m

• To find the body of method m in type C:

• Find the definition of m in the body of C, if it exists

• Otherwise, find the body of m in the immediate
superclass of C

51

