Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 14, 2017

Homework 1

Please submit your homework via the SVN / turnin
system, in a folder named hw 1

. The specific files to submit are defined in the
description for each assignments

For each section, please turn in only your final program
resulting from completion of the section

. Think about overflow!

Please Restrict Your Homework Submission
to Features Covered in Class

Current Core Scala Features

- Object

- case class

- val

- 1f /else

- match/case
require, ensuring

- Int,Double, String

« Array, Tuples
. Arithmetic operators

. (In)equality operators

Logical and / or

- assertEquals etc.

. A-expressions (€nsuring)

Plus the stuff from today!

Please Restrict Your Homework Submission
to Features Covered in Class

These should be the only import statements you need:

import junit.framework.TestCase

import junit.framework.Assert.

(or equivalent imports auto-generated by your IDE for
your JUnit test class)

Type Checking

Type Checking

So far, we have been rigorous about computation of
programs, but we have relied on intuition for static type

checking

We can provide a static semantics for Core Scala along
with our dynamic semantics

The Substitution Model of
Type Checking

. To type check a value v, replace v with its value type
1.003 = Double

. To type check a constant c, reduce the defining expression of c to a static type T, then
replace all occurrences of ¢ with T

pi = 3.14 =
pi : Double
pi * radius * radius =

Double * radius * radius

The Substitution Model of
Type Checking

. To type check a function definition:

. Type check the body of the definition, replacing all occurrences of each parameter with
the corresponding parameter type

. To type check the occurrence of a function name:

. Replace the name with an arrow type, where the parameter types of the function are to
the left of the arrow and the return type is to the right

square(x: Double): Double = x * x
square(3.14) =

(Double - Double) (3.14)

The Substitution Model of
Type Checking

. To type check the application of a function to
arguments:

. Reduce the function to an arrow type
. Reduce the arguments, left to right, to static types

. If the argument types match the corresponding
parameter types, reduce the application to the return

type

10

The Substitution Model of
Type Checking

square(3.14) =
(Double - Double)(3.14) =
(Double - Double) (Double) =

Double

11

Methods and Operators

Syntactic Sugar For Binary
Methods

. We refer to methods that take one parameter (in
addition to the receiver) as binary methods

case class Coordinate(x: Int, y: Int) {
def magnitude() = X*X + y*y

def add(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

13

Syntactic Sugar For Binary
Methods

Coordinate(1l,2).add(Coordinate(3,4))

| o 4

Coordinate(4,06)

14

Syntactic Sugar For Binary
Methods

. We can elide the dot in method calls on binary methods

. We can also elide the enclosing parentheses around the

sole argument

15

Syntactic Sugar For Binary
Methods

Coordinate(1l,2) add Coordinate(3,4)

-

Coordinate(4,06)

16

Operator Symbols

. Scala allows the use of operator symbols in method names

. In fact, operators are simply methods in Scala

1 + 2 - 3

1.+4(2) - 3

17

Coordinate Custom +

case class Coordinate(x: Int, y: Int) {
def magnitude() = X*X + y*y

def +(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

18

Coordinate Custom +

Coordinate(1,2) + Coordinate(3,4)

-

Coordinate(4,6)

19

Requires Clauses on Class
Constructors

case class Name(fieldl: Typel, .., fieldN: TypeN) {
require (boolean-expression)

« Checked on every constructor call

« Because case class instances are immutable, this ensures the
property holds for the lifetime of an instance

20

Equals on Case Classes

. The equals method on a case class instance checks for

structural equality with its argument:
Rational(4,6).equals(Rational(4,6)) »

true

21

Equals on Case Classes

Note that equals is a binary method, and so we can also
write this expression as:

Rational(4,6) equals Rational(4,6) »

true

22

Equals on Case Classes

. Of course, the built in equals method does not check for

mathematical equality:
Rational(4,6) equals Rational(2,3) »

false

23

Equals on Case Classes

. Why is this definition of equality acceptable on case

classes?

. What other definition is available to us?

Rational(4,6) equals Rational(2,3) »

false

24

Short-Circuiting And and Or
Operators

. Just as we have defined a short-circuiting if-then-else
operator, we can define short-circuiting and/or
operators:

&& | |

. How do we define the static and dynamic semantics
of these operators?

. When are they useful?

25

Calling and Defining Parameterless
Methods Without Parentheses

def toString() = { .. }
VS.

def toString = { .. }

26

Calling and Defining Parameterless
Methods Without Parentheses

Rational(4,6).toString()
VS.

Rational(4,6).toString

27

The Uniform Access Principle

. Client code should not be affected by whether an
attribute is defined as a field or a method

. Only applies to pure (side-effect free) methods

. Can be strange even for some pure methods (what
are some examples?)

28

Abstract Datatypes

Abstract Datatypes

. Often, we wish to abstract over a collection of

compound datatypes that share common properties
For example, we might wish to define an abstract

datatype for shapes, with separate case classes for each
of several shapes

For this purpose, we define an abstract class and use
subclassing

30

Abstract Datatypes

abstract class Shape

case class Circle(radius: Double) extends Shape

case class Square(side: Double) extends Shape

case class Rectangle(height: Double, width: Double) extends Shape

31

Recall Our Design Recipe

Analysis: What are the objects in the problem domain? What data
types we will use to represent them?

Contract: What is name of our functions and their parameters?
What are the requirements of the data they consume and produce?
What is the meaning of what our program computes?
Repeat until we are confident in our program’s correctness

Write some tests

Sketch a function template

Define the function

32

Recall Our Design Recipe

Analysis: This is the stage where we would discover we wish to
model our problem domain with functions over an abstract datatype

Contract: What contract holds for each function? Do additional
constraints and assurances hold for specific subclasses?

Repeat until we are confident in our program'’s correctness

Write some tests: Same as before

Sketch a function template: This needs re-examination

Define the function

33

The Design Recipe for Abstract
Datatypes

. Our Function Template for computing with abstract
datatypes depends on answering the following
questions:

. Do | expect to eventually add more subclasses?

. Do | expect to eventually add more functions?

34

Case 1
We Expect Few New Functions
But Many New Variants

Case 1: We Expect Few New
Functions But Many New Variants

. This is a case that object-oriented programming handles well

. Classic example domains: GUI Programming, Productivity Apps,
Graphics, Games

. Declare an abstract method in our superclass and provide a concrete
definition for each sub-class

a.k.a.,
The Union Pattern (for the datatype definitions)

The Template Method Pattern (for the function definitions)

36

Abstract Datatypes

abstract class Shape {
def area: Double

}

37

Abstract Datatypes

case class Circle(radius: Double) extends Shape {
val p1 = 3.14

def area = pl1 * radius * radius

38

Abstract Datatypes

case class Square(side: Double) extends Shape {

def area = side * side

39

Abstract Datatypes

case class Rectangle(length: Double, width: Double)
extends Shape {

def area = length * width

40

How Do Abstract Classes Affect
Our Type Checking Rules?

. When type checking a class definition, ensure that all
abstract methods declared in the superclass are actually
defined, with compatible method types

. When type checking a collection of class definitions,
ensure that there are no cycles in the class hierarchy!

41

How Do Abstract Classes Affect
Our Type Checking Rules?

. If a method is called on a receiver whose static type is

an abstract class, extract an arrow type from the
declaration (just as with a definition in a concrete class)

expr.area »
Shape.area »

() - Double

42

Type Checking Arguments to a
Method Call

. The static types of an argument might no longer be an
exact match:

abstract class Shape {
def area: Double

def makelLikeMe(that: Shape): Shape
}

(Let us set aside the concrete definitions of makeLikeMe
for awhile)

43

Now Consider a Call to
Matcher With Concrete Types

Circle(1l) .makeLikeMe(Circle(2)) =
Circle.makeLikeMe(Circle) =

(Shape - Shape) (Circle)

And now we are stuck...

44

Recall The Substitution Model
of Type Checking

. To type check the application of a function to
arguments:

. Reduce the function to an arrow type
. Reduce the arguments, left to right, to static types

. If the argument types match the corresponding
parameter types, reduce the application to the return

type

45

Subtyping

. We need to widen our definition of matching a type to
include subtyping

. A class is a subtype of the class it extends
. Subtyping is Reflexive:

A <: A

. Subtyping is Transitive:

If A <: Band B <: C then A <: (C

46

Subtyping

. All types are a subtype of type Any
. Type Nothing is a subtype of all types

. There is no value with value type Nothing

47

Recall The Substitution Model
of Type Checking

. To type check the application of a function to
arguments:

. Reduce the function to an arrow type

. Reduce the arguments, left to right, to static types

. If the argument types are subtypes of the
corresponding parameter types, reduce the
application to the return type

48

Applying a Class Method
Revisited

. To reduce the application of a method:

C(vl, .., vk).m(argl, .., argN)
. Reduce the receiver and arguments, left to right
. Reduce the body of m, replacing constructor

parameters with constructor arguments and method
parameters with method arguments

49

Applying a Class Method
Revisited

. To reduce the application of a method:
C(vl, .., vk).m(argl, .., argN)
. Reduce the receiver and arguments, left to right

. Find the body of m in C and reduce to that,
replacing constructor parameters with constructor
arguments and method parameters with method

arguments

50

The Body of m

. To find the body of method m in type C:
. Find the definition of m in the body of C, if it exists

. Otherwise, find the body of m in the immediate
superclass of C

51

