
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 26, 2017

Announcements

• Homework 1 is due Thursday

• Nate has office hours tomorrow
(check Piazza for details)

• Updated calendar and slides on course website

2

More on First-Class
Functions

3

More Syntactic Sugar
for First-class Functions

• Functions defined with def can be passed as
arguments whenever an expression of a compatible
function type is expected

• What constitutes a compatible function type?

4

Partially Applied Functions

If we want to pass a function as an argument, but supply
some of the arguments to the function ourselves, we can
wrap an application to the function in a function literal:

map(x => x + 1, xs)

5

Partially Applied Functions

If we want to pass a function as an argument, but supply
some of the arguments to the function ourselves, we can
wrap an application to the function in a function literal:

map(x => x + 1, xs)

which is equivalent to

map(_ + 1, xs)

6

Eta Expansion

η-expansion: Wrapping a function in function literal that
takes all of the arguments of f and immediately calls f
with those arguments

(x: Int) => square(x)

is equivalent to

square

7

Mapping a Computation Over
a List

map(x => -x, xs)

We can use η-expansion to pass operators
as arguments:

8

Mapping a Computation Over
a List

map(-_, xs)

Note that we are also using η-expansion when we use
underscore notation for function literals:

9

Returning Functions as
Values

10

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int): Int => Int = {
def addX(y: Int) = x + y
addX

}

11

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int): Int => Int = {
def addX(y: Int) = x + y
addX

}

The explicit return type is needed because
Scala type inference assumes an unapplied

function is an error
12

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int) = {
def addX(y: Int) = x + y
addX _

}

Alternatively, we can η-expand addX to assure
the type checker that we really do intend to return a function

13

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int) = {
def addX(y: Int) = x + y
addX _

}

An underscore outside of parentheses in a function
application denotes the entire tuple of arguments

passed to the function is left unapplied
14

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int) = x + (_: Int)

We can instead define add by partially η-expanding
the + operator. But then we need to annotate the

second operand with a type.
15

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int): Int => Int = x + _

If we have the explicit return type, then the compiler has all
the information it needs to correctly infer the type

16

Imports

17

Importing a Member of a
Package

import scala.collection.immutable.List

18

Importing Multiple Members
of a Package

import scala.collection.immutable.{List, Vector}

19

Importing and Renaming
Members of a Package

import scala.collection.immutable.{List=>SList, Vector}

20

Importing All Members of a
Package

import scala.collection.immutable._

Note that * is a valid identifier in Scala!

21

Combining Notations

import scala.collection.immutable.{_}

same meaning as:

import scala.collection.immutable._

22

Combining Notations

import scala.collection.immutable.{List=>SList,_}

Imports all members of the package but renames
List to SList

23

Combining Notations

import scala.collection.immutable.{List=>_,_}

Imports all members of the package
except for List

24

Importing a Package

import scala.collection.immutable

Now sub-packages can be denoted by shorter names:

immutable.List

25

Importing and Renaming
Packages

import scala.collection.{immutable => I}

Allows members to be written like this:

I.List

26

Importing Members of An
Object

import Arithmetic._

Allows members such as Arithmetic.gcd to be
write like this:

gcd

27

Implicit Imports

import java.lang._
import scala._
import Predef._

The following imports are implicitly included
in your program:

28

Package java.lang

• Contains all the standard Java classes

• This import allows you to write things like:

Thread

instead of:

java.lang.Thread

29

Package scala

• Provides access to the standard Scala classes:

BigInt, BigDecimal, List, etc.

30

Object Predef

• Definitions of many commonly used types and
methods, such as:

require, ensuring, assert

31

Limiting Visibility

32

Visibility Modifier Private

Modifier Explanation

no modifier public access

private
private to object

Arithmetic

For a method Arithmetic.reduce in package Rationals

33

Local Definitions

• As with constant definitions (val), we can make
function definitions local to the body of a function

• The functions can be referred to only in the body of the
enclosing function

34

def reduce() = {
val isPositive =

((numerator < 0) & (denominator < 0)) |
((numerator > 0) & (denominator > 0))

def reduceFromInts(num: Int, denom: Int) = {
require ((num >= 0) & (denom > 0))
val gcd = Arithmetic.gcd(num, denom)
val newNum = num/gcd
val newDenom = denom/gcd

if (isPositive) Rational(newNum, newDenom)
else Rational(-newNum, newDenom)

}
reduceFromInts(Arithmetic.abs(numerator), Arithmetic.abs(denominator))

} ensuring (_ match {
case Rational(n,d) => Arithmetic.gcd(n,d) == 1 & (d > 0)

})

Local Definitions

35

Local Imports

Unlike Java, Scala’s import statements are not limited to
the top-level. They can appear almost anywhere:

def myHelperMethod(...) = {
import Arithmetic._
val someVal = gcd(abs(x), abs(y))
// ...

}

36

Additional Syntactic
Forms

37

Repeated Parameters
• Scala allows the last entry in a parameter list to stand

for zero or more arguments

• Arguments are placed in a sequence of the given type

def squares(xs: Int*) =
for (x <- xs)
yield x*x

38

Repeated Parameters
• Scala allows the last entry in a parameter list to stand

for zero or more arguments

• Arguments are placed in a sequence of the given type

squares(4,2,6,5,8)
squares()

squares(4,2,6,8)
squares(3)

squares(4,3,7)

39

Repeated Parameters
• Scala allows the last entry in a parameter list to stand

for zero or more arguments

• Arguments are placed in a sequence of the given type

def fnName(a1: T1, ..., aN: TN*) = expr

40

Repeated Parameters
• Scala allows the last entry in a parameter list to stand

for zero or more arguments

• Arguments are placed in a sequence of the given type

squares(1, 2, 3, 4, 5) ↦*
ArrayBuffer(1, 4, 9, 16, 25)

41

ArrayBuffers
• Buffers in Scala enable incremental creation of sequences

• Random access to elements

• Support destructive append, prepend, insert

• We have not talked about destructive operations yet

• Just pretend they are Arrays for now

• ArrayBuffers are simply Buffers implemented using Arrays

• Similar idea to Java’s ArrayList class

42

Repeated Parameters

• If you have an array and you wish to pass it to a
repeated parameter, include the suffix :_*

val myArray = Array(1, 2, 3)
squares(myArray: _*)

43

Guidelines on Repeated
Parameters

• Use repeated parameters to provide factory methods for collections
classes

• Use repeated parameters for methods that map over an immediately
provided set of values

• Use repeated parameters for folds over an immediately provided set
of values

List(1,2,3,4,5)

squares(1,2,3,4,5)

sum(1,2,3,4,5)

44

Named Arguments

• With named arguments, the arguments to a function
can be passed in any order

• Each argument must be prefixed with the name of the
parameter and an equals sign:

def speed(distance: Double, time: Double) =
distance/time

speed(distance = 2.0, time = 5.0)

45

Named Arguments

If positional arguments are mixed with named arguments,
the positional arguments must come first

def speed(distance: Double, time: Double) =
distance/time

speed(2.0, time = 5.0)

46

Guidelines on Named
Arguments

• Named arguments add bulk to function applications

• Use when it’s unclear which arguments correspond to which
parameters, e.g.:

• There are multiple arguments of the same type

• There is no natural order for the arguments

• The expected order of the arguments is difficult to remember

47

Default Parameter Values

• Function parameters can include default values:

• The argument for a parameter with a default value can be
omitted at the call site:

case class Circle(radius: Double = 1) extends Shape {
val pi = 3.14

def area = { pi * radius * radius }
def makeLikeMe(that: Shape): Circle = this

}

Circle()

48

Guidelines of Default
Parameter Values

• Consider default parameter values instead of static
overloading

• Use when there is a common argument value that is
usually used

• A default I/O source, file location, etc.

49

Takeaway Points

• Choose the syntactic construct that makes your first-
class functions clear and concise.

• Scala’s import statements are flexible. Try to cut the
verbosity without introducing ambiguity.

• Scala gives you several tools to limit visibility / access
(This is important! Think encapsulation.)

• Syntactic sugar can help or hurt—think before using.

50

