Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 12, 2017

Type Hierarchies

Inheritance (subclass / superclass relationships) form a
complete lattice in the Scala type system:

Each pair of classes has exactly one:
Least upper-bound
Greatest lower-bound

. The same applies to all value types

Hasse Diagrams

1 @119/ hu

Scala Type Lattice
/Any\

////AnyRef AnyVal
Llst //////777§<?i:\\\\
Strlng Int Double Unit ..
Nll
Null

Nothing

Multiple Inheritance

. Multiple inheritance is achieved in Scala using traits
(we’ll discuss the details of traits in a later lecture)

. Types using multiple inheritance don’t form a lattice:
No unique least-upper-bound

No unique greatest-lower-bound

Overrides

Overriding Methods

. Use the override keyword

Not strictly necessary if the superclass’s method is
abstract (unimplemented), but it helps you catch errors

Overriding toString

case class Sum(x: Expr, y: Expr) extends Expr {
override def toString: String = {
s"${x} + ${y}"
}
}

Semantics of Exceptions

Continuations

Reification of what happens next

. Captures the remainder of the computation at a given

point in a computation

Example:
f(x, y) + z
\ '] |\ _J

Currently continuation
evaluating

10

More Continuation
Examples

. Tail calls

A function call is a tail call iff the continuation of the
call in the current method is empty; i.e., the
continuation is returning to the parent caller.

1T (X) y else z
Continuation of x is y when x is true, and z otherwise

- f(x match {case A => {..} case B => {..}})
Continuation of case A => {...} is to call the function f
with the resulting value

11

Semantics of Exceptions

Thrown exceptions cause a sudden change in a
program’s flow of control

Exceptions cause the current continuation to be
replaced with an error handler

The catch block of the closest enclosing try block is
the current error handler (if it has a matching case)

If there is no error handler, then evaluation ends in an
error state with the thrown exception value

12

Try/Catch Blocks

try {
expression,
}

catch {
case ExceptionPattern; => expression;
case ExceptionPattern, => expression,

13

Exception Reduc

tion Rules

To reduce an expression throw x, where x has already been

reduced to some exception value:

Replace the entire body of the closest-enclosing try block with

throw X

If one of the case clauses in the corresponding catch block

matches the exception x, then reduce t

ne try/catch block to the

case’s expression (just like you would c

o for a match block)

If none of the cases match, then propagate throw x to the next-

closest enclosing try block

If there are no more enclosing try bloc
remainder of the program with throw

14

ks, then replace the entire
x as the final result

Reducing to an Error

require(false) w»
throw new IllegalArgumentException()

1 /0w
throw new ArithemeticException()

{
val x: List[Int]
val List(y, z) =

= N1l
X

} e

throw new MatchError()

15

Try/Catch Example

case : AssertionError => -1

case : MatchError => -2
}
}
catch {

case : Exception => -3

\ _

16

Try/Catch Example

5 + throw new ArithmeticException()

}

catch {
case : AssertionError => -1

case : MatchError => -2
}
}
catch {
case : Exception => -3

}

17

Try/Catch Example

throw new ArithmeticException()

}

catch { n
case : AssertionError => -1
case : MatchError => -2

} .

}
catch {
case : Exception => -3

}

18

—

No matching
case clause

Try/Catch Example

100 +

try {
throw new ArithmeticException()

}

catch { ,
case : Exception => -3 «—__ Matching

} case clause

19

Try/Catch Example

100 + { -3} = 97

Expressions that Throw

. ArithmeticException: divide by zero

. NoSuchElementException:
Nil.head, Map(1-2).get(3), ..

. ArraylndexOutOfBoundsException

. MatchError

. AssertionError: assert, ensuring clause failures

lllegal ArgumentException: require clause failure

21

More on Operators

Operator Precedence

Based on starting character, lowest to highest:

1. Assignment operators’ 7. < =

2. Any letter 8.

5. | 9. + -

s, 7 0. * / %

5. & 11. All other symbols

T The = operator, plus any other
operator that ends with =, but doesn’t

start with =, and is not <=, >=, or !=
23

Precedence Example

1% 2 -4 ** 2 ==105 EQ true © false

1% (2 -4) ** 2 =05 EQ true ©~ false

(1 % (2 - 4)) ** 2 =5 EQ true © false

((1 % (2 -4)) ** 2) == 5 EQ true © false
((1 % (2 -4)) ** 2) == 5 EQ (true © false)

(((1 % (2 - 4)) ** 2) == 5) EQ (true ©~ false)

24

Colon Operators

Binary operators ending with : are applied in reverse
. The receiver is the second argument

. The parameter is the first argument

e X 11 Y =Y. i (X)

e X +: Y = Y. +: (X)

e X 1+ Y = X. i+ (Y)

25

Destructuring with Binary
Constructor Patterns

Binary case class factory methods can be used in patterns
as binary operators for destructuring;:

. The “cons” operator for matching head and tail of list:
val x :: xs = List(1l, 2, 3, 4)

. Any arity-2 case class constructor works:
val a Tuple2 b =5 - "five"

. Used a lot in Scala’s parser combinators:
A ~B // match A followed by B

26

