
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 12, 2017

Type Hierarchies
Inheritance (subclass / superclass relationships) form a
complete lattice in the Scala type system:

• Each pair of classes has exactly one:

• Least upper-bound

• Greatest lower-bound

• The same applies to all value types

2

Hasse Diagrams

3

Scala Type Lattice

4

Nothing

Null

Any

AnyRef AnyVal

Int Double Unit …String …
List

:: Nil

Multiple Inheritance

• Multiple inheritance is achieved in Scala using traits
(we’ll discuss the details of traits in a later lecture)

• Types using multiple inheritance don’t form a lattice:

• No unique least-upper-bound

• No unique greatest-lower-bound

5

Overrides

6

Overriding Methods

• Use the override keyword

• Not strictly necessary if the superclass’s method is
abstract (unimplemented), but it helps you catch errors

7

Overriding toString

case class Sum(x: Expr, y: Expr) extends Expr {
override def toString: String = {

s"${x} + ${y}"
}

}

8

Semantics of Exceptions

9

Continuations
• Reification of what happens next

• Captures the remainder of the computation at a given
point in a computation

• Example:

10

f(x, y) + z

Currently
evaluating

Continuation

More Continuation
Examples

• Tail calls
A function call is a tail call iff the continuation of the
call in the current method is empty; i.e., the
continuation is returning to the parent caller.

• if (x) y else z
Continuation of x is y when x is true, and z otherwise

• f(x match {case A => {…} case B => {…}})
Continuation of case A => {…} is to call the function f
with the resulting value

11

Semantics of Exceptions
• Thrown exceptions cause a sudden change in a

program’s flow of control

• Exceptions cause the current continuation to be
replaced with an error handler

• The catch block of the closest enclosing try block is
the current error handler (if it has a matching case)

• If there is no error handler, then evaluation ends in an
error state with the thrown exception value

12

Try/Catch Blocks

try {
expression0

}
catch {

case ExceptionPattern1 => expression1
case ExceptionPattern2 => expression2
…

}

13

Exception Reduction Rules
To reduce an expression throw x, where x has already been
reduced to some exception value:

• Replace the entire body of the closest-enclosing try block with
throw x

• If one of the case clauses in the corresponding catch block
matches the exception x, then reduce the try/catch block to the
case’s expression (just like you would do for a match block)

• If none of the cases match, then propagate throw x to the next-
closest enclosing try block

• If there are no more enclosing try blocks, then replace the entire
remainder of the program with throw x as the final result

14

Reducing to an Error
require(false) ↦
throw new IllegalArgumentException()

1 / 0 ↦
throw new ArithemeticException()

{
val x: List[Int] = Nil
val List(y, z) = x
…

} ↦
throw new MatchError()

15

Try/Catch Example
100 +
try {

try {
5 + 1 / 0

}
catch {

case _: AssertionError => -1
case _: MatchError => -2

}
}
catch {

case _: Exception => -3
}

16

Try/Catch Example
100 +
try {

try {
5 + throw new ArithmeticException()

}
catch {

case _: AssertionError => -1
case _: MatchError => -2

}
}
catch {

case _: Exception => -3
}

17

Try/Catch Example
100 +
try {

try {
throw new ArithmeticException()

}
catch {

case _: AssertionError => -1
case _: MatchError => -2

}
}
catch {

case _: Exception => -3
}

18

No matching
case clause

Try/Catch Example
100 +
try {

throw new ArithmeticException()
}
catch {

case _: Exception => -3
}

19

Matching
case clause

Try/Catch Example
100 + { -3 }

20

↦ 97

Expressions that Throw
• ArithmeticException: divide by zero

• NoSuchElementException:
Nil.head, Map(1→2).get(3), …

• ArrayIndexOutOfBoundsException

• MatchError

• AssertionError: assert, ensuring clause failures

• IllegalArgumentException: require clause failure

21

More on Operators

22

Operator Precedence
Based on starting character, lowest to highest:

23

1. Assignment operators†

2. Any letter

3. |

4. ^

5. &

6. = !

7. < >

8. :

9. + -

10. * / %

11. All other symbols
† The = operator, plus any other
operator that ends with =, but doesn’t
start with =, and is not <=, >=, or !=

Precedence Example

1 % 2 → 4 ** 2 == 5 EQ true ^ false

1 % (2 → 4) ** 2 == 5 EQ true ^ false

(1 % (2 → 4)) ** 2 == 5 EQ true ^ false

((1 % (2 → 4)) ** 2) == 5 EQ true ^ false

((1 % (2 → 4)) ** 2) == 5 EQ (true ^ false)

(((1 % (2 → 4)) ** 2) == 5) EQ (true ^ false)

24

Colon Operators
• Binary operators ending with : are applied in reverse

• The receiver is the second argument

• The parameter is the first argument

• X :: Y ⇒ Y.`::`(X)

• X +: Y ⇒ Y.`+:`(X)

• X :+ Y ⇒ X.`:+`(Y)

25

Destructuring with Binary
Constructor Patterns

Binary case class factory methods can be used in patterns
as binary operators for destructuring:

• The “cons” operator for matching head and tail of list:
val x :: xs = List(1, 2, 3, 4)

• Any arity-2 case class constructor works:
val a Tuple2 b = 5 → "five"

• Used a lot in Scala’s parser combinators:
A ~ B // match A followed by B

26

