
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 17, 2017

Filters in For Expressions

for (x <- xs if x >= 0)
yield square(x) + 1

This is a filter

2

Filters in For Expressions

• Filters are attached to generators

• A given generator can have zero or more filters

3

for (
x <- xs
if x >= 0
if x % 2 == 0

) yield square(x) + 1

Filters in For Expressions

4

Clauses Can Be Enclosed in
Braces Instead of Parentheses

for {
x <- xs
if x >= 0
if x % 2 == 0

} yield square(x) + 1

5

For Expressions Can Include
Multiple Generators

for {
x <- xs
if x >= 0
y <- ys
if y % 2 == 0

} yield x * y

6

For Expressions Can Include
Local Bindings

for {
x <- xs
if x >= 0
square = x * x
y <- ys
if y % square == 0

} yield x * y

7

Generators Can Specify
Arbitrary Patterns

val xs = Cons(Square(4),
Cons(Circle(3),
Cons(Rectangle(2,3),
Empty)))

for {
Rectangle(x,y) <- xs

} yield x * y
↦*

Cons(6.0, Empty)

8

Generators Can Specify
Arbitrary Patterns

• Elements of the collection that do not match the
pattern are filtered

• Effectively, a pattern in a for expression serves as part
of a generator and a filter

9

Guidelines on Using For
Expressions

• Prefer for expressions to maps and filters

• They tend to be easier to read:

• All bindings and collections iterated over are listed
up front

• Prefer {…} to (…) around non-trivial for clauses

10

For vs Map

• Compare:

for (x <- xs if x >= 0)
yield square(x) + 1

• To:

xs.filter(_ >= 0).map(square(_) + 1)

11

For Expressions and Database
Queries

• for expressions are similar to standard database
queries

• Consider a simple in-memory database of books,
represented as a list of Book instances (Odersky et al
2012):

case class Book(title: String, authors: String*)

12

For Expressions and Database
Queries

val books: List[Book] =
Cons(
Book(
“Structure and Interpretation of Computer Programs”,
“Abelson, Harold”, “Sussman, Gerald J.”

),
Book(
“How to Design Programs”,
“Felleisen, Matthias”, “Findler, Robert Bruce”,
“Flatt, Mathew”, “Krishnamurthi, Shriram”

),
Book(
“Programming in Scala”,
“Odersky, Martin”, “Spoon, Lex”, “Venners, Bill”

)
…

)
13

Finding All Books Whose Author
Has Last Name “Sussman”

for {
b <- books
a <- b.authors
if a startsWith “Sussman,”

} yield b.title

14

Finding All Books That Have The
String “Program” In the Title

for {
b <- books
if b.title indexOf “Program” >= 0

} yield b.title

15

Finding All Authors That Have Written
More Than One Book in the Database

for {
b1 <- books
b2 <- books if b1 != b2
a1 <- b1.authors
a2 <- b2.authors
if a1 == a2

} yield a1

16

Translating For Expressions

• For expressions are simply translated to maps,
flatMaps, and filters by the Scala compiler

• Translation occurs before type checking

• Why is this preferable?

• We start by considering only for expressions with
generators that bind simple names (no patterns)

17

Translating For Expressions
With A Single Generator

for (x <- expr1) yield expr2
↦

expr1.map(x => expr2)

18

Translating For Expressions
With a Generator and a Filter

for (x <- expr1 if expr2) yield expr3
↦

for (x <- expr1 withFilter (x => expr2)) yield expr3

19

Translating For Expressions
With a Generator and a Filter

for (x <- expr1 if expr2) yield expr3
↦

for (x <- expr1 withFilter (x => expr2)) yield expr3
↦

expr1 withFilter (x => expr2) map (x => expr3)

For now, read this as “filter”. We will return to it.

20

Translating For Expressions
Starting With a Generator and a Filter

for (x <- expr1 if expr2; seq) yield expr3
↦
for (x <- expr1 withFilter (x => expr2); seq)
yield expr3

21

Translating For Expressions
Starting With Two Generators

for (x <- expr1; y <- expr2; seq) yield expr3
↦
expr1.flatMap(x => for (y <- expr2; seq) yield expr3)

22

Translating For Expressions
Example

for (b1 <- books; b2 <- books if b1 != b2;
a1 <- b1.authors; a2 <- b2.authors if a1 == a2)

yield a1
↦
books flatMap (b1 =>
books withFilter (b2 => b1 != b2) flatMap (b2 =>
b1.authors flatMap (a1 =>
b2.authors withFilter (a2 => a1 == a2)
map (a2 => a1))))

23

Translating Patterns in
Generators

for (pat <- expr1) yield expr2
↦
expr1 withFilter (_ match {
case pat => true
case _ => false

}) map (_ match {
case pat => expr2

})

Other cases with patterns and for
expressions are similar

24

Generalizing For Expressions

• Because for expressions are simply translated to
expressions involving map, flatMap, and withFilter,
we can use for expressions over our own collections

• We need only define: map, flatMap and withFilter

• Because translation occurs before type checking,
there is no particular type that a collection must
subtype to be compatible with for-expressions

25

Generalizing For Expressions

• We can even define a subset of these methods and use
our collection only in for expressions that translate to
our subset!

• For example, if we do not define withFilter, we
cannot use our collection in a for expression with a
filter

26

Generalizing For Expressions

• Because translation occurs before type checking, there
is no particular signature that our methods map,
flatMap and withFilter must satisfy!

• All that is required is that the resulting, translated
program passes type checking

27

The WithFilter Function

• In our own List implementation, we could simply define
withFilter as filter, and our collection would work
with for expressions

• The idea behind withFilter is that it is often
advantageous to simply wrap the collection in a view
that performs the given filter on the next map

• Because no particular type signature is required, we
need only define map and flatMap on our wrapper

28

The WithFilter Function

abstract class List[+T] {
…
def withFilter[S >: T, U](p: S => Boolean) =
WithFilter[S](p,this)

}

29

The WithFilter Function

case class WithFilter[T](p: T => Boolean, xs: List[T]) {
def map[U](f: T => U): List[U] = {
xs match {
case Empty => Empty
case Cons(y,ys) => {
val rest = WithFilter(p,ys) map f
if (p(y)) Cons(f(y), rest)
else rest

}
}

}
…

}

30

The WithFilter Function

• Because results of withFilter are immediately taken
apart by a map or a flatMap, we can still think of the
result of a withFilter as being an instance of the
original collection

31

Typical Structure of a Class That
Works With For Expressions

abstract class C[A] {
def map[B](f: A => B): C[B]
def flatMap[B](f: A => C[B]): C[B]
def withFilter(p: A => Boolean): C[A]

}

32

Monads
• In functional programming, a monad can be defined as

a type for which we can formulate

• The functions map, flatMap, and withFilter

• A “unit constructor” which produces a monad from
an element value

• In an object-oriented language, we can think of the
“unit constructor” simply as a constructor or a
factory method

33

Monads

Because for expressions work over precisely those
datatypes for which we can formulate the functions that
characterize monads, we can think of for expressions as
syntax for computing with monads

34

Monads
• But monads are able to characterize far more than just

collections:

• I/O

• State

• Transactions

• Options

• etc.

35

Monads

• Thus, for expressions can be used in far more general
contexts than simply walking over collections

• When looking at library classes, watch for
implementations of map, flatMap, withFilter

• When these functions are defined, consider expressing
your computation with for expressions

36

The Environment Model
of Reduction

37

Limitations of the Substitution
Model of Reduction

• Consider the following function definition:

def makeOddBooster(n: Int) = {
require(n >= 0)
def isEven(n: Int): Boolean = {
(n == 0) || isOdd(n - 1)

}
def isOdd(n: Int): Boolean = {
!isEven(n)

}
(m: Int) => if (isEven(m)) m else m + n

}
38

Limitations of the Substitution
Model of Reduction

• Our makeOddBooster function cannot be expanded
before it is returned

• It must remember the context in which it was formed

39

The Environment Model of
Reduction

• Name environments map names to values

• Every expression is evaluated in the context of a name
environment

40

The Environment Model of
Reduction

• To evaluate a name, simply reduce to the value it is
mapped to in the environment

41

The Environment Model of
Reduction

• To evaluate a function, reduce it to a lexical closure,
which consists of two parts:

• The body of the function

• The environment in which the body occurs

42

The Environment Model of
Reduction

• To evaluate an application of a closure

• Extend the environment of the closure, mapping the
function’s parameters to argument values

• Evaluate the body of the closure in this new
environment

43

Constructs that Add New
Names to the Environment

• val

• def

• object

• case class

• import

• Bindings in patterns

• Function applications

44

Example Evaluation

makeOddBooster(3)(1); ENV ↦
(m: Int) => if (isEven(m)) m else m + n)(1);

{n: Int = 3,
isEven = Closure(…),

isOdd = Closure(…)} ∪ ENV ↦
if (isEven(m)) m else m + n;

{m: Int = 1, n: Int = 3, …} ∪ ENV ↦*
if (false) m else m + n;

{m: Int = 1, n: Int = 3, …} ∪ ENV ↦
m + n;

{m: Int = 1, n: Int = 3, …} ∪ ENV ↦
4; ENV

45

Takeaways

• Use Scala’s for-expressions liberally

• Define map, flatMap and/or withFilter on your own
monad-like data-structures to use them with for

• To evaluate non-trivial expressions, we need to keep
track of an environment

• Lexical closures are used to store function values in an
environment

46

