
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 19, 2017



The Environment Model of 
Reduction

• To evaluate an application of a closure

• Extend the environment of the closure, mapping the 
function’s parameters to argument values

• Evaluate the body of the closure in this new 
environment

2



Example Evaluation

makeOddBooster(3)(1); ENV ↦
(m: Int) => if (isEven(m)) m else m + n)(1);

{n: Int = 3, 
isEven = Closure(…), 

isOdd = Closure(…)} ∪ ENV ↦
if (isEven(m)) m else m + n;

{m: Int = 1, n: Int = 3, …} ∪ ENV ↦*
if (false) m else m + n;

{m: Int = 1, n: Int = 3, …} ∪ ENV ↦ 
m + n;

{m: Int = 1, n: Int = 3, …} ∪ ENV ↦
4; ENV

3



Lexical vs Dynamic Scoping

• The semantics of function application that we have 
outlined is referred to as lexical scoping

• Early versions of Lisp avoided the need for closures:

• They reduced function applications by extending the 
environment in which the application occurred

• This semantics of function application is known as 
dynamic scoping

• Why is dynamic scoping problematic?

4



Call-By-Value
and

Call-By-Name

5



Call-By-Value

• Thus far, the evaluation semantics we have studied 
(both with the substitution and environment models) is 
known as call-by-value:

• To evaluate a function application, we first evaluate 
the arguments and then evaluate the function body

6



Call-By-Value

• We have seen several “special forms” where this 
evaluation semantics is not what we want:

&&     ||     if-else

7



Call-By-Value

• We could delay evaluation in these cases by wrapping 
arguments in function literals that take no parameters

def myOr(left: Boolean, right: () => Boolean) =
if (left) true
else right()

8



Call-By-Value

• We could delay evaluation in these cases by wrapping 
arguments in function literals that take no parameters

• Functions that take no arguments are referred to as 
thunks

myOr(true, () => 1/0 == 2) ↦ true

9



Call-By-Name

• Scala provides a way that we can pass arguments as 
thunks without having to wrap them explicitly

We simply leave off the parentheses 
in the parameter’s type

def myOr(left: Boolean, right: => Boolean) =
if (left) true
else right

10



Call-By-Name

• Now we can call our function without wrapping the 
second argument in an explicit thunk:

• The thunk is applied (to nothing) the first time that the 
argument is evaluated in a function 

myOr(true, 1/0 == 2) ↦ true

11



Call-By-Name

• We can use by-name parameters to define new control 
abstractions:

def myAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

12



Syntactic Sugar: Braces for 
Passing Arguments

• Any function that takes a single argument can be 
applied by passing the argument enclosed in braces 
instead of parentheses

myAssert {
2 + 2 == 4

}

13



Syntactic Sugar: Braces for 
Passing Arguments

• Any function that takes a single argument can be 
applied by passing the argument enclosed in braces 
instead of parentheses

myAssert {
def double(n: Int) = 2 * n
double(2) == 4

}

14



The Environment Model 
of Type Checking

15



The Environment Model of 
Type Checking

• We have used environments in type checking to hold 
the bounds on type parameters

• They can also be used to record the types of names and 
function parameters

• Rather than thinking of typing rules as substitutions, 
we can think of them directly as assertions on 
expressions that we can reason with according to a 
logic

16



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping rules in 
the context of an environment by placing an 
environment to the left of a “turnstile” and a typing 
judgement to the right

17



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping rules in 
the context of an environment by placing an 
environment to the left of a “turnstile” and a typing 
judgement to the right

18



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping rules in 
the context of an environment by placing an 
environment to the left of a “turnstile” and a typing 
judgement to the right

19



The Environment Model of 
Type Checking

• We express typing rules in the context of 

• a type parameter environment and 

• a type environment (mapping names to types) 

• We place both environments to the left of the “turnstile” 
(separated by a semicolon) and a typing judgement to the right:

20



The Environment Model of 
Type Checking

• Some typing judgements require assumptions

• We place assumed judgements above a horizontal bar 
(above the resulting type judgement)

21



The Environment Model of 
Type Checking

• Function applications involve checking the function and 
the arguments:

22



The Environment Model of 
Type Checking

• To type check an expression in a pair of environments:

• Form a proof tree, where each node is the application 
of an inference rule

• The root of the tree is the typing judgement we are 
trying to prove

• Each premise in a given rule is the root of a subtree 
proving that premise

23



The Environment Model of 
Type Checking

• For each form of expression there is exactly one 
inference rule

• Therefore, proving a typing judgement is a simple 
recursive descent over the structure of an expression

24



Scala Immutable 
Collections

25



Immutable Lists

• Behave much like the lists we have defined in class

• Lists are covariant

• The empty list is written Nil

• Nil extends List[Nothing]

26



Immutable Lists

• The list constructor takes a variable number of 
arguments:

List(1,2,3,4,5,6)

27



Immutable Lists

• Non-empty lists are built from Nil and Cons (written as 
the right-associative operator ::)

1 :: 2 :: 3 :: 4 :: Nil

28



List Operations

• head returns the first element

• tail returns a list of elements but the first

• isEmpty returns true if the list is empty

• Many of the methods we have defined are available on 
the built-in lists

29



FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(zero /: xs)(op)

(xs :\ zero)(op)

30



FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(xs foldLeft zero)(op)

(xs foldRight zero)(op)

31



FoldLeft and FoldRight
Written as Methods

• foldLeft:

• foldRight:

xs.foldLeft(zero) { op }

xs.foldRight(zero) { op }

32



SortWith

List(1,2,3,4,5,6) sortWith (_ > _)
↦

List(6, 5, 4, 3, 2, 1)

33



Range

List.range(1,5)
↦

List(1, 2, 3, 4)

34



Using Fill for Uniform Lists

List.fill(10)(0) ↦
List(0,0,0,0,0,0,0,0,0,0) 

35



Using Fill for Uniform Lists

List.fill(3,3)(0) ↦

List(List(0,0,0),
List(0,0,0),
List(0,0,0)) 

36



Tabulating Lists

List.tabulate(3,3) { (m,n) =>
if (m == n) 1 else 0

}
↦
List(List(1,0,0),

List(0,1,0),
List(0,0,1)) 

37



Immutable Sets

38



Immutable Sets

• Sets are unordered, unrepeated collections of elements

• Set[T]  extends the function type T ⇒ Boolean

• Sets are parametric and invariant in their element type

39



Set Factory

Set(1,2,3,4,5)

40



Set Element Addition

Set(1,2,3) + 4 ↦
Set(1,2,3,4)

41



Set Element Subtraction

Set(1,2,3) - 2 ↦
Set(1,3)

42

Set(1,2,3) - 4 ↦
Set(1,2,3)



Set Union

Set(1,2,3) ++ Set(2,4,5) ↦
Set(1,2,3,4,5)

43



Set Difference

Set(1,2,3) -- Set(2,4,5,3) ↦
Set(1)

44



Set Intersection

Set(1,2,3) & Set(2,4,5,3) ↦
Set(2,3)

45



Set Cardinality

Set(1,2,3).size ↦
3

46



Set Membership

Set(1,2,3).contains(2) ↦
true

Set(1,2,3)(2) ↦
true

47

The apply method on sets is 
equivalent to the contains method.



Immutable Maps

48



Immutable Maps

• Maps are collections of key/value pairs

• They are parametric in both the key and value type

• Invariant in their key type

• Covariant in their value type

49



The -> Operator

• The infix operator -> returns a pair of its arguments:

• Note: Scala also allows Unicode Operators, and the infix 
“→” operator is one such example:

1 -> 2
↦

(1,2)

1 → 2
↦

(1,2)

50



The → Operator is Left 
Associative

> 1 → 2 → 3 → 4
res8: (((Int, Int), Int), Int) = (((1,2),3),4)

51



The Map Factory

Map("a" → 1, "b" → 2, "c" → 3) 
↦

Map(a -> 1, b -> 2, c -> 3)

52



Map Addition

Map("a" → 1, "b" → 2, "c" → 3) + ("d" → 4) 
↦

Map(a -> 1, b -> 2, c -> 3, d -> 4)

53



Map Operations

The operators/methods are defined in the expected way:

• -

• ++

• --

• size

54



Map Membership

Map("a" → 1, "b" → 2, "c" → 3).contains("b")
↦

true

55



Map Lookup

Map("a" → 1, "b" → 2, "c" → 3)("c")
↦
3

56



Map Keys

Map("a" → 1, "b" → 2, "c" → 3).keys
↦

Set(a, b, c): Iterable[String]

57

Map("a" → 1, "b" → 2, "c" → 3).keySet
↦

Set(a, b, c): Set[String]



Map Values

Map("a" → 1, "b" → 2, "c" → 3).values
↦

Set(1,2,3)

58



Map Empty

Map("a" → 1, "b" → 2, "c" → 3).isEmpty
↦

false

59



Traits

60



Traits

Traits provide a way to factor out common behavior 
among multiple classes and mix it in where appropriate

61



Trait Definitions

Syntactically, a trait definition looks like an abstract class 
definition, but with the keyword “trait”:

trait Echo {
def echo(message: String) =
message

}

62



Trait Definitions

• Traits can declare fields and full method definitions

• They must not include constructors

trait Echo {
val language = “Portuguese"
def echo(message: String) =
message

}

63



Using Traits

• Classes “mix in” traits using either the extends or 
with keywords

class Parrot extends Echo {
def fly() = {
// forget to fly and talk instead
echo("poly wants a cracker")

}
}

64



Using Traits

• Classes “mix in” traits using either the extends or 
with keywords

class Parrot extends Bird with Echo {
def fly() = {
// forget to fly and talk instead
echo("poly wants a cracker")

}
}

65



Using Traits

• Classes “mix in” traits using either the extends or 
with keywords

trait Smart {
def somethingClever() = 
“better a witty fool than a foolish wit”

}

66



Using Traits

• Classes can mix in multiple traits via multiple withs:

class Parrot extends Bird with Echo 
with Smart {
def fly() = {
// forget to fly and talk instead
echo(somethingClever())

}
}

67



Using Traits

Classes can mix in multiple traits via multiple withs:

trait X
case class Foo()

new Foo() with X

68

Must use the new keyword when creating 
a new class instance with a mixin trait


