Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 26, 2017

Announcements

Homework 4 assigned today

Halite-11 contest is open! https://halite.io

. Write a bot in Scala and get some extra credit!
Up to 25% of a project grade
Details will be posted to Piazza

Extra credit in excess of 100% of projects grade will be
curved down after the 100% threshold

https://halite.io/

How to Decide Between Structural
and Generative Recursion

. Structural recursion is typically:

. Easier to design

. Easier to understand

. Generative recursion can be faster (sometimes!)

How to Decide Between Structural
and Generative Recursion

. As a general guideline:
. Start with structural recursion
. If it turns out to be too slow:

. Explore generatively recursive approaches

Strategies for
Generative Recursion

Binary Search

. The strategy of searching over a sequence by breaking
in half and searching over just one of them

. Our search for blue-eyed ancestors falls into this
category

. We could also use binary search for root finding

Newton’s Method could be viewed as an optimization
on binary search for root finding

Divide and Conquer

. The strategy of breaking a problem into smaller sub-
problems of the same type

. Unlike binary search, you process all of the sub-pieces

. Quicksort falls into this category

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
Xs match {

case Nil => Nil

case X :: Xs => {
val (smaller, larger) = separate(xs, X)
guickSort(smaller) ++
List(x) ++
quickSort(larger)

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
Xs match {
case Nil
case X ::

val (smal
quickSort(s
List(x) ++
quickSort(large

=> Nil

s => {

r, larger) = separate(xs, X)
ller) ++

) Trivially solvable

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
Xs match {

case Nil => Nil

case X :: Xs => {
val (smaller, larger) = separate(xs, X)
guickSort(smaller) ++
List(x) ++F
quickSort(larger)

} Sub-problems

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
Xs match {

case Nil => Nil

case X :: Xs => {
val (smaller, larger) = separate(xs, X)
guickSort(smaller) ++
List(x) ++
quickSort (L er)

Combination

Separate

def separate(xs: List[Int], x: Int): (List[Int], List[Int]) = {
Xs match {
case Nil => (Nil, Nil)
case y :: ys => {
val (smaller, larger) = separate(ys, Xx)
if (y < x) (y :: smaller, larger)
else (smaller, y :: larger)
}
}
}

Description and Termination
Argument

/>I<>|<

Recurs on two sublists of the given list:
All elements smaller than a given “pivot”
ALl elements at least as large as the pivot
Appends the recursive solutions.
Because each sublist 1s strictly smaller
(the pivot was extracted from the list),
we eventually recur on an empty Llist.

¥ ¥ ¥ K ¥ ¥ %

*/
def quickSort(xs: List[Int]): List[Int] = {

, -

Backtracking
Algorithms

N-Queens

. Place 8 Queens on an 8x8 chessboard such that none

. Generalizable to NxN boards

can attack any other

Graph Algorithms

. Many problems can be expressed as traversals or
computations over graphs

. Travel planning
. Circuit design
. Social networks

. etc.

Graph Algorithms

. We consider the problem of finding a path from one

vertex to another in a graph

Data Analysis and Design

. We model graphs as Maps of Strings to Lists of Strings

case class Graph(elements: (String, List[String])*)
extends Functionl[String, List[String]] {

val elements = Map(elements: *)

def apply(s: String) = elements(s)

}

Data Analysis and Design

. We model graphs as Maps of Strings to Lists of Strings

val sampleGraph =

new Graph (IIAII _> List(llEll’ IIBII)’
IIBII _> List(llAll) ,
IICII _> LiSt("D")’
"D" -> List(),
IIEII _> List(IICII’ IIFII)’
IIFII _> List(llAll’ IIGII)’
||G|| -> LlSt())

What is a Trivially Solvable
Problem?

. If the start and end vertices are identical

How Do We Generate Sub-
Problems?

. Find nodes connected to start and recur

How Do We Relate the
Solutions?

. We need only find one solution; no need to combine

multiple solutions

Contract Attempt 1

/>I<>I<
* Create a path from start to finish in G
*/
def findRoute(start: String, end: String,
graph: Graph): List[String]

But what if there is no path?

Options

. Often the result of a computation is that no satisfactory

value could be found
Lookup in a table with a key that does not exist

. Attempting to find a path that does not exist

Scala Options

abstract class Option[+A] {..}
object None extends Option[Nothing] {..}
class Some[+A] (val contained: A) extends Option[A] {

, -

Options Are Monads!

abstract class Option[+A] {
def flatMap[B](f: (A) = Option[B]): Option[B]
def map[B](f: (A) = B): Option[B]
def withFilter(p: (A) = Boolean):
FilterMonadic[A, collection.Iterable[A]]

Contract Attempt 2

/>I<>|<

* Create a path from start to finish in G, 1if
* 1t exists.
*/
def findRoute(start: String, end: String,
graph: Graph):
Option[List[String]]

Reduce to Backtracking Cases

def findRoute(start: String, end: String,
graph: Graph): Option[List[String]] = {
if (start == end) Some(List(end))
else for (route <- routeFromOrigins(graph(start), end, graph))
yield start :: route

Recursive Sub-Problems

def routeFromOrigins(origins: List[String], destination: String,
graph: Graph): Option[List[String]] = {
origins match {
case Nil => None
case origin :: origins => {
findRoute(origin, destination, graph) match {

case None => routeFromOrigins(origins, destination,graph)
case Some(route) => Some(route)

}
}
}
}

Termination

- routeFromOrigins is structurally recursive:
It terminates provided that findRoute terminates

But f1indRoute terminates only if there are no cycles
in the graph it traverses

