Comp 311
~unctional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC



Announcements

* (Guest Lecture on Tuesday:
 Shams Imam: Co-routines in Scala

* My office hours next week will be at Thursday
4-5pm



Red-Black Irees
Continued



Review: Red-Black Irees

 Every node is colored either red or black
e All leaf nodes are black
e No red node has a red child

* Every path from the root to a leaf contains the same
number of black nodes



Review: An Example Red-
Black Iree




Review: Strategy for
Insertion

e \We Insert new elements as usual, but then

repbalance the tree to maintain the red-black
invariants

* At the end of the rebalancing, we recolor the root to
black

e [his cannot violate our Invariants



Red-Black Irees

abstract class Treel[T <: Ordered[T]] {

def empty = Leaf[T]

def contains(x: T): Boolean

def insert(x: T): Tree[T] = insertChildren(x) match {
case Branch(c,1l,e,r) => Branch(Black, 1, e, r)

}
def insertChildren(x: T):¢ Branch[T]

We call a helper function insertChildren,
which performs the insertion and rebalancing.



Red-Black Irees

abstract class Treel[T <: Ordered[T]] {

def empty = Leaf[T]

def contains(x: T): Boolean

def insert(x: T): Tree[T] = insertChildren(x) match {
case Branch(c,1l,e,r) => Branch(Black, 1, e, r)

}
def insertChildren(x: T):

We take the result from insertChildren, ignore
the color of the root and return a tree that is nearly identical
except that the root is colored black.



Red-Black Irees

case class Leaf[T <: Ordered[T]]() extends Tree[T] {
def contains(x: T) = false
def insertChildren(x: T) = Branch(Red, this, x, this)

¥



Red-Black Irees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

def contains(x: T) = {
1f (X < element) left contains x
else 1f (x > element) right contains x
else true // x == element

¥



Red-Black Irees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

def insertChildren(x: T) = {
1f (X < element)
balance(color, left insertChildren x, element, right)
else 1f (x > element)
balance(color, left, element, right insertChildren x)
else this

¥



Rebalancing;
There are Four Cases to Consider

£ 4% %




Rebalancing;
There are Four Cases to Consider

&% fZ} Azx‘x

We use pattern matching to enumerate the cases.






def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {



def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {




def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

A/

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =




def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

/N

case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢c), z, d



def balance(c Color, 1: Tree[T], x: r: Tree[T]) =
(Ca 1 F) matCh {

e

case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢), z

’



def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =




def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))




def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢c), z
Branch(Red, Branch(Black, a, x, b), vy, Branch(Black




def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {

(c, 1, x, r) match {
O
KX A A

case (Black, Branch(Red, Branch(Red, a, x, b), vy, |c), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))







def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =



def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))




\




def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>



def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))







def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

C d

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>



def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))




def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))



def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, ), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case _ => Branch(c, 1, x, r)



Red-Black Irees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
ck, a, x, b), y, Branch(Black, c, z, d))
, Branch(Red, b, y, ), z, d)) =>
X, b), y, Branch(Black, c, z, d))
case (Black, a, x, , b, y, Branch(Red, ¢, z, d))) =>

Branch(Red, Bragch(Bluock, N x, b), y, Branch(Black, c, z, d))
case _ => Branch(??\TT\xT\g\\\\
3

) Unfortunately, all four consequences are syntactically
Identical




Red-Black Irees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

def balance(c: Color, 1: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, ¢), z, d) =
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =
ck, a, x, b), y, Branch(Black, c, z, d))
, Branch(Red, b, y, ), z, d)) =>
X, b), y, Branch(Black, c, z, d))
case (Black, a, x, , b, y, Branch(Red, ¢, z, d))) =>

Branch(Red, Bragch(Bluock, N x, b), y, Branch(Black, c, z, d))
case _ => Branch(??\TT\xT\g\\\\
3

In some languages (such as ML) we could factor this
out with“or” patterns




DISCUSSION

* This iImplementation of red-black trees is
dramatically simpler than most imperative
approaches:

* Imperative approaches typically include eight

cases, branching on the color of the red parent’s
sibling

* [hese cases help to avoid some assignment and
copying in an imperative setting



Streams



Streams

e Streams are a form of “lazy” sequence

* Inspired by signal-processing systems (such as
digital circuits):

 Components accept streams of signals as input,
transform their input, and produce streams of
signals as outputs



Streams

abstract class Stream[+T] {

def head(): T

ef tail(): Stream[T]

ef map[S](f: T => S): Stream[S]

ef flatMap[S](f: T => Stream[S]): Stream[S]
ef ++[S >: T](that: Stream[S]): Stream[S]
ef withFilter(f: T => Boolean): Stream|[T]
ef nth(n: Int): T

QA OO A A A QA



Streams

case object Ni1lStream extends Stream[Nothing] {

def head() = throw new Error()

def tail() = throw new Error()

def map[S](f: Nothing => S): Stream[S] = NilStream
def flatMap[S](f: Nothing => Stream[S]): Stream[S] =
N11lStream

def ++[S >: Nothing](that: Stream[S]) = that

def withFilter(f: Nothing => Boolean) = NilStream
def nth(n: Int) = throw new Error()




Streams

case class ConsStream[+T]Chead: T, _tail: () => Stream[T])
extends Stream[T] {
def tail = _tail()
def map[S](f: T => S): Stream[S] =
ConsStream(fChead), (O => (tail map f))
def flatMap[S](f: T => Stream[S]): Stream[S] =
f(current) ++ tail.flatMap(f)
def ++[S >: T](that: Stream[S]): Stream[S] =
ConsStream(Chead, () => tail ++ that)



Streams

case class ConsStream[+T](Chead: T, _tail: () => Stream[T])
extends Stream[T] {

def withFilter(f: T => Boolean) = {
1f (f(head)) ConsStream(Chead, () => tail.withFilter(f))
else tail.withFilter(f)

¥

def nth(n: Int) = {
require (n >= 0)
1f (n == 0) head
else tail.nth(n - 1)

¥

¥



Streams

def range(low: Int, high: Int): Stream[Int] =
1f (low > high) NilStream
else ConsStream(low, () => range(low + 1, high))



Streams

def intsFrom(n: Int): Stream[Int] =
ConsStream(n, () => intsFrom(n + 1))



Streams

val nats = 1ntsFrom(Q)



Streams

def fibGen(a: Int, b: Int): Stream[Int] =
ConsStream(a, () => fibGen(b, a + b))



Streams

val fibs = fibGen(0, 1)



Streams

def push(x: Int, ys: Stream[Int]) = {
ConsStream(x, () => ys)

¥



Streams

def 1isDivisible(m: Int, n: Int) = (m % n == 0)



Streams

def i1sDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))



A Prime Sieve

def sieve(stream: Stream[Int]): Stream[Int] =
ConsStream(stream. head,
() => sieve(stream.tail withFilter
(x => !(1sDivisible
(x, stream.head)))))



A Stream of Primes

val primes = sieve(intsFrom(2))



A Stream of Primes

> primes.head
resS: Int = 2
> primes.nth(l)
reso: Int = 3
> primes.nth(2)
res/: Int = 5
> primes.nth(3)
res8: Int = 7



Streams

def add(xs: Stream[Int], ys: Stream[Int]): Stream[Int]
= {
(xs, ys) match {
case (Ni1lStream, _) => ys
case (_, Ni1lStream) => xs
case (ConsStream(x,f), ConsStream(y,g)) =>
ConsStream(x + y, (O => add(f(), gO)))



Streams

def ones(): Stream[Int] = ConsStream(1l, ones)



Alternative Definition of the
Stream of Natural Numbers

def nats(): Stream[Int] =
ConsStream(@®, () => add(ones, nats))



Alternative Definition of the
Fibonaccl Stream

def fibs(): Stream[Int] =
ConsStream(0,
() => ConsStream(1,
() => add(fibs.tail, fibs)))



Powers of Two

def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] =
stream map (_ * c)

def powersOfTwo(): Stream[Int] =
ConsStream(1l, () => scaleStream(2, powersOfTwo))



Alternative Definition of the
Stream of Primes

def primes() =
ConsStream(2, () => intsFrom(3) withFilter isPrime)

def i1sPrime(n: Int): Boolean = {
def 1ter(next: Stream[Int]): Boolean = {
1t (square(next.head) > n) true
else 1f (1sDivisible(n, next.head)) false
else 1ter(next.tail)
¥
1ter(primes)

¥



N .
umeric Integration with
Streams

Sz' :C+ijdt

7=1



Numeric Integration with
Streams

def integral(integrand: Stream[Double], init: Double, dt: Double)

= {
def inner(): Stream[Double] = {
ConsStream(intit,
() => addStreams(scaleStream(dt,
1ntegrand),
1nner))
h
1nner



Streams and Local State

def withdraw(balance: Int, amounts: Stream[Int]):
Stream[Int] = {
ConsStream(balance,
() => withdraw(balance - amounts.head,
amounts.tail))



DISCUSSION

* Our modeling of a bank account is a purely
functional program without state

* Nevertheless:
* |f a user provides the stream of withdrawals, and
* [The stream of balances is displayed as outputs,

* [The system will behave from a user’s perspective
as a stateful system



DISCUSSION

* The key to understanding this paradox is that the
“state” Is in the world:

e The user/bank system is stateful and provides
the input stream

e |f we could “step outside” our own perspective In
time, we could view our withdrawal stream as
another stateless stream of transactions



