Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 2, 2017

Functional
Data Structures

Leftist Heaps

Leftist Heaps

Often in a collection of elements we only need to access
the minimum element

A data structure that supports access only to the
minimum element is called a heap:

A tree in which the element at the root of each
subtree is the minimum element of that subtree

Priority queues are often implemented as heaps

Leftist Heaps

. Let the rank of a node be the length of its right spine
. Then a leftist heap also satisfies the following property:

. The rank of a left child is no smaller than the rank of
its sibling

2 Rank 0

4 Rank 0

6 Rank 0

7 Rank 0

10

Not a Leftist Heap

/

4 Rank 0

/

Rank 2 - Rank 1

/ \
7 Rank 0 9 11

12

2 Rank 0

Consequences of the Leftist
Property

. The right spine of a node is always the shortest path to
a leaf

. The right spine of a node contains O(log n) elements in
the worst case

. The elements along the right spines are in sorted order

13

Efficient Merging of Two
Leftist Heaps

. Intuitively, we can merge two leftist heaps by:

. Merging their right spines as if they were sorted lists

. Swapping child nodes along the merged right spine
as needed to preserve the leftist property

14

2

AN

/ N\ /7\ /5\

We want to merge these two trees.

N

/ N\ /7\ /5\

Which tree has the minimal root?

3

/\ /\

/\ /\

Merge below minimal root to maintain heap invariant.

17

Rank 1

3 RankO

Rank 1 Rank T

/\ /\

What are our new node ranks?

18

' Rank 1

|
J' \

3 Rank 2 3 Rank 0
4 Rank 1 7 Rank 1

/\ /\

Swap sub-trees to maintain rank invariant.

19

Leftist Heaps

case class Leaf[T <: Ordered[T]]() extends Heap[T] {
def rank = 0
def 1sEmpty = true
def merge(that: Heap[T]) = that

def min = throw new Error(
"Attempt to call min on an empty heap")

def deleteMin = throw new Error(
"Attempt to call deleteMin on an empty heap")

20

Leftist Heaps

case class Branch|[T <: Ordered[T]]
rank: Int, x: T, left: Heap[':
right: Heap[T]) extends Heap[T] {

-

def 1sEmpty = false

def merge(that: Heap[T]) = {
that match {
case Leaf() => this
case Branch(, vy, L, r) =
1f (x <= y) makeBranch(x, left, right merge that)
else makeBranch(y, l, this merge r)

}
}

def min = X
def deleteMin = left merge right

21

Leftist Heaps

abstract class Heap[T <: Ordered[T]] {

}

def empty = Leaf[T]
def 1isEmpty: Boolean

def insert(element: T): Heap[T] =
this merge Branch(1l, element, empty, empty)

def merge(that: Heap[T]): Heap[T]

/* require (! isEmpty) */
def min: T

/* require (! isEmpty) */
def deleteMin: Heap[T]

def rank: Int

def makeBranch(x: T, a: Heap[T], b: Heap[T]) = {
if (a.rank >= b.rank) Branch(b.rank + 1, x, a, b)
else Branch(a.rank + 1, x, b, a)

}

22

Red-Black Trees

Red-Black Trees

. With naive binary search trees, lookup can take O(n)
time in the worst case

. We can fix this problem by rebalancing the trees as we
add elements

Red-Black trees are one approach to keeping the trees
approximately balanced

24

Red-Black Trees

. Every node is colored either red or black

. All leaf nodes are black

. No red node has a red child

. Every path from the root to a leaf contains the same

number of black nodes

25

An Example Red-Black Tree

Red-Black Trees

. These invariants imply that:

. The longest possible path from the root to a leaf

consists of an alternating sequence of red nodes and
black nodes

. The shortest possible path from the root to a leaf
consists of all black nodes

. Thus, there is at most a factor of two difference in

length between the shortest and longest paths

27

Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

28

Red-Black Trees

sealed abstract class Color
case ject Red extends Color
case obyect Black extends Color

All subclasses of a sealed class must be defined

in the same file as the sealed class.

29

Red-Black Trees

sealed abstract class Color
case ject Red extends Color
case obyect Black extends Color

Pattern matching against a sealed class
is checked to ensure exhaustiveness.

30

Strategy for Insertion

We insert new elements as usual, but then rebalance
the tree to maintain the red-black invariants

At the end of the rebalancing, we recolor the root to

black

This last step cannot violate our invariants

31

Red-Black Trees

abstract class Tree[T <: Ordered[T]] {

def empty = Leaf[T]

def contains(x: T): Boolean

def 1insert(x: T): Tree[T] = 1nsertChildren(x) match {
case Branch(c,1l,e,r) => Branch(Black, 1, e, r)

}

def insertChildren(x: T): Branch[T]
}

We call a helper function insertChildren,
which performs the insertion and rebalancing.

32

Red-Black Trees

abstract class Tree[T <: Ordered[T]] {

def empty = Leaf[T]

def contains(x: T): Boolean

def 1insert(x: T): Tree[T] = 1nsertChildren(x) match {
case Branch(c,1l,e,r) => Branch(Black, 1, e, r)

}

def insertChildren(x: T): B ch[T]

We take the result from insertChildren, ignore
the color of the root and return a tree that is nearly identical

except that the root is colored black.
33

Red-Black Trees

case class Leaf[T <: Ordered[T]]() extends Tree[T] {
def contains(x: T) = false
def insertChildren(x: T) = Branch(Red, this, x, this)

}

34

Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Treel[T])
extends Tree[T] {

def contains(x: T) = {
if (x < element) left contains x
else if (x > element) right contains x
else true // x == element

}

35

Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

def insertChildren(x: T) = {
if (x < element)
balance(color, left insertChildren x, element, right)
else if (x > element)
balance(color, left, element, right insertChildren x)
else this

}

36

Rebalancing

. Because the base case of insertChildren (at a leaf node)

always inserts a red node, the number of black nodes
along each path is unaffected

. However, the new tree might contain a red node with a

red child

37

Rebalancing:
There are Four Cases to Consider

£ 48 %

Rebalancing:
There are Four Cases to Consider

AA% %ﬁ %A

We use pattern matching to enumerate the cases.

39

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

/A

A

case (Black, Branch(Red, Branch(Red, a, x, b), vy, ¢c), z, d) =>

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

/N

/N/:

case (Black, Branch(Red, Branch(Red, a, x, b), vy, ¢c), z, d) =>

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), vy, ¢c), z, d) =>

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), vy, ¢), z,
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {

(c, 1, x, r) match {

1Ch

case (Black, Branch(Red, Brar

| A

(Red, a, x, b), vy, c), z

Branch(Red, Branch(Black, a, >

48

<, b), y, Branch(Black,

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

/<<>d\ /{2}
a \
Ly bdbh

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

/\

case (Black, Branch(Red, Branch(Red, a, x, b), vy, ¢c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, vy, ¢)), z, d) =>

51

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), vy, c), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z,
case (Black, Branch(Red, a, x, Branch(Red, b, y, ¢)), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z,

))
))

>
d
>
d

52

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) mat@® {

case (Black, Branch(Red, Branch(Red, a, x, b), vy, c), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z
case (Black, Branch(Red, a, x, Branch(Red, b, vy, ¢)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z

case (Black, a, x, Branch(Red, Branch(Red, b, y, ¢), z, d))

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), vy, c), z, d)

Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z

case (Black, Branch(Red, a, x, Branch(Red, b, vy, c)), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

)

Z

case (Black, a, x, Branch(Red, Branch(Red, b, y, ¢c), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c,

Q\
AN
o bo4h

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, 1, x, r) mat@@{

C

case (Black, Branch(Red, Branch(Red, a, x, b), y, c),

Branch(Red, Branch(Black, a, x, b), v, Branch(Black

case (Black, Branch(Red, a, x, Branch(Red, b, y, c))

’

Branch(Red, Branch(Black, a, x, b), v, Branch(Black

case (Black, a, x, Branch(Red, Branch(Red, b, y, c),

Branch(Red, Branch(Black, a, x, b), y, Branch(Black,

case (Black, a, x, Branch(Red, b, y, Branch(Red, c,

Z,

Z

I

’
C
’
C,

C

d

’

d

d)
d))

)
Z
)
Z
)
Z
)

’

’

’

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

\/ A A

case (Black, Branch(Red, Branch(Red, a, x, b), vy, c), z, d)

Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, Z

case (Black, Branch(Red, a, x, Branch(Red, b, vy, c)), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

)

Z

)

Z

, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, ¢c), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c,
case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c,

, d))
, d))

} 58

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), vy, ¢), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, ¢), z, d)) =
Branch(Red, Branch(Black, a, x, b), v, Branch(Black c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, d)))
Branch(Red, Branch(Black, a, x, b), v, Branch(Black c, z, d))

59

def balance(c: Color, l: Tree[T], x: T, r:

(c, 1, x, r) match {

case (Black, Branch(Red, Branch(Red,

Tree[T]) = {

a, x, b), vy, c),

Branch(Red, Branch(Black, a, x, b), y, Branch(Black,
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)),
Branch(Red, Branch(Black, a, x, b), v, Branch(Black
case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z,
Branch(Red, Branch(Black, a, x, b), y, Branch(Black,
case (Black, a, x, Branch(Red, b, y, Branch(Red, c,
Branch(Red, Branch(Black, a, x, b), y, Branch(Black,

case => Branch(c, 1, x, r)

60

Z,

Z

’
C,

’
C,
C

C

d

d

d)
d))

)
Z
)
Z
)
Z
)
Z

, d))
, d))
, d))

, d))

Red-Black Trees

case class Branch|[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Treel[T] {

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), vy, c), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d)
Branch(Red, Branch(Btack, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, X, (Red, Branch(Red, b, y, ¢c), z, d)) =>
Branch(Red, Branch(a, X, b), vy, Branch(Black, c, z, d))
case (Black, a, X, d, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch x, b), vy, Branch(Black, c, z, d))
case => Branch(t; X,
}
I Unfortunately, all four consequences are syntactically

) identical
61

Red-Black Trees

case class Branch|[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Treel[T] {

def balance(c: Color, Ll: Tree[T], x: T, r: Tree[T]) = {
(c, L, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), vy, c), z, d)
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d)
Branch(Red, Branch(Btack, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, X, (Red, Branch(Red, b, y, ¢c), z, d)) =>
Branch(Red, Branch(a, X, b), vy, Branch(Black, c, z, d))

case (Black, a, X, d, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch x, b), vy, Branch(Black, c, z, d))

case => Branch (& X,

I In some languages (such as ML) we could factor this

} o out with"or” patterns
62

Discussion

. This implementation of red-black trees is dramatically

simpler than most imperative approaches:

Imperative approaches typically include eight cases,
branching on the color of the red parent’s sibling

. These cases help to avoid some assignment and
copying in an imperative setting

63

