
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 2, 2017

Functional
Data Structures

2

Leftist Heaps

3

Leftist Heaps

• Often in a collection of elements we only need to access
the minimum element

• A data structure that supports access only to the
minimum element is called a heap:

• A tree in which the element at the root of each
subtree is the minimum element of that subtree

• Priority queues are often implemented as heaps

4

2

4 7

6 7 9 11

5

2

4

7
6

7 9 11
6

2

4

6

7
7

Leftist Heaps

• Let the rank of a node be the length of its right spine

• Then a leftist heap also satisfies the following property:

• The rank of a left child is no smaller than the rank of
its sibling

8

2

4 7

6 7 9 11

Rank 2

Rank 1 Rank 1

9

2

4

6

7

Rank 0

Rank 0

Rank 0

Rank 0

10

2

4

7
6

7 9 11

Rank 1 Rank 2

Rank 0

Rank 0

Rank 0

11

2

4

7
6

7 9 11

Rank 1 Rank 2

Rank 0

Rank 0

Rank 0
Not a Leftist Heap

12

Consequences of the Leftist
Property

• The right spine of a node is always the shortest path to
a leaf

• The right spine of a node contains O(log n) elements in
the worst case

• The elements along the right spines are in sorted order

13

Efficient Merging of Two
Leftist Heaps

• Intuitively, we can merge two leftist heaps by:

• Merging their right spines as if they were sorted lists

• Swapping child nodes along the merged right spine
as needed to preserve the leftist property

14

3

4 7

6 7 9

2

3

5

10 11

We want to merge these two trees.
15

3

4 7

6 7 9

2

3

5

10 11

Which tree has the minimal root?
16

3

4 7

6 7 9

2

3

5

10 11

17

Merge below minimal root to maintain heap invariant.

3

4 7

6 7 9

2

3

5

10 11

Rank 1

Rank 0

Rank 1

Rank 1 Rank 1

Rank 2

18

What are our new node ranks?

3

4 7

6 7 9

2

3

5

10 11

Rank 1

Rank 0

Rank 1

Rank 1 Rank 1

Rank 2

19

Swap sub-trees to maintain rank invariant.

Leftist Heaps
case class Leaf[T <: Ordered[T]]() extends Heap[T] {
def rank = 0
def isEmpty = true

def merge(that: Heap[T]) = that

def min = throw new Error(
"Attempt to call min on an empty heap")

def deleteMin = throw new Error(
"Attempt to call deleteMin on an empty heap")

}

20

Leftist Heaps
case class Branch[T <: Ordered[T]](

rank: Int, x: T, left: Heap[T],
right: Heap[T]) extends Heap[T] {

def isEmpty = false

def merge(that: Heap[T]) = {
that match {

case Leaf() => this
case Branch(_, y, l, r) =>

if (x <= y) makeBranch(x, left, right merge that)
else makeBranch(y, l, this merge r)

}
}
def min = x
def deleteMin = left merge right

}
21

Leftist Heaps
abstract class Heap[T <: Ordered[T]] {
def empty = Leaf[T]
def isEmpty: Boolean

def insert(element: T): Heap[T] =
this merge Branch(1, element, empty, empty)

def merge(that: Heap[T]): Heap[T]

/* require (! isEmpty) */
def min: T

/* require (! isEmpty) */
def deleteMin: Heap[T]

def rank: Int

def makeBranch(x: T, a: Heap[T], b: Heap[T]) = {
if (a.rank >= b.rank) Branch(b.rank + 1, x, a, b)
else Branch(a.rank + 1, x, b, a)

}
}

22

Red-Black Trees

23

Red-Black Trees

• With naïve binary search trees, lookup can take O(n)
time in the worst case

• We can fix this problem by rebalancing the trees as we
add elements

• Red-Black trees are one approach to keeping the trees
approximately balanced

24

Red-Black Trees

• Every node is colored either red or black

• All leaf nodes are black

• No red node has a red child

• Every path from the root to a leaf contains the same
number of black nodes

25

An Example Red-Black Tree

CB

A

ED

EE

E E

26

Red-Black Trees
• These invariants imply that:

• The longest possible path from the root to a leaf
consists of an alternating sequence of red nodes and
black nodes

• The shortest possible path from the root to a leaf
consists of all black nodes

• Thus, there is at most a factor of two difference in
length between the shortest and longest paths

27

Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

28

Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

All subclasses of a sealed class must be defined
in the same file as the sealed class.

29

Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

Pattern matching against a sealed class
is checked to ensure exhaustiveness.

30

Strategy for Insertion

• We insert new elements as usual, but then rebalance
the tree to maintain the red-black invariants

• At the end of the rebalancing, we recolor the root to
black

• This last step cannot violate our invariants

31

Red-Black Trees

abstract class Tree[T <: Ordered[T]] {
def empty = Leaf[T]
def contains(x: T): Boolean
def insert(x: T): Tree[T] = insertChildren(x) match {
case Branch(c,l,e,r) => Branch(Black, l, e, r)

}
def insertChildren(x: T): Branch[T]

}

We call a helper function insertChildren,
which performs the insertion and rebalancing.

32

Red-Black Trees

abstract class Tree[T <: Ordered[T]] {
def empty = Leaf[T]
def contains(x: T): Boolean
def insert(x: T): Tree[T] = insertChildren(x) match {
case Branch(c,l,e,r) => Branch(Black, l, e, r)

}
def insertChildren(x: T): Branch[T]

}

We take the result from insertChildren, ignore
the color of the root and return a tree that is nearly identical

except that the root is colored black.
33

Red-Black Trees

case class Leaf[T <: Ordered[T]]() extends Tree[T] {
def contains(x: T) = false
def insertChildren(x: T) = Branch(Red, this, x, this)

}

34

Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

def contains(x: T) = {
if (x < element) left contains x
else if (x > element) right contains x
else true // x == element

}
…

}

35

Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {
…
def insertChildren(x: T) = {
if (x < element)
balance(color, left insertChildren x, element, right)

else if (x > element)
balance(color, left, element, right insertChildren x)

else this
}
…

}

36

Rebalancing

• Because the base case of insertChildren (at a leaf node)
always inserts a red node, the number of black nodes
along each path is unaffected

• However, the new tree might contain a red node with a
red child

37

Rebalancing:
There are Four Cases to Consider

c

38

Rebalancing:
There are Four Cases to Consider

c

We use pattern matching to enumerate the cases.

39

Z

X

Y

a b

c

d
ZX

Y

a b c d

40

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

…
}

}
…

} 41

Z

X

Y

a b

c

d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

} 42

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

Z

X

Y

a b

c

d

43

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

Z

X

Y

a b

c

d

44

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

Z

X

Y

a b

c

d

45

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d

46

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d

47

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d

48

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d

49

Z

X

Y
a

b c

d
ZX

Y

a b c d

50

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

Z

X

Y

a

b c

d

51

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d

52

X

Y

Z
a

b c

d

ZX

Y

a b c d

53

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

X

Y

Z
a

b c

d

54

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

ZX

Y

a b c d

55

X

Y

Z
a

b

c d

YX

Z

a b c d

56

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}

X

Y

Z

a

b

c d

57

YX

Z

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}

58

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}

59

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case _ => Branch(c, l, x, r)
}

}

60

Red-Black Trees
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

…
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case _ => Branch(c, l, x, r)
}

}
…

}

Unfortunately, all four consequences are syntactically
identical

61

Red-Black Trees
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

…
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case _ => Branch(c, l, x, r)
}

}
…

}

In some languages (such as ML) we could factor this
out with“or” patterns

62

Discussion

• This implementation of red-black trees is dramatically
simpler than most imperative approaches:

• Imperative approaches typically include eight cases,
branching on the color of the red parent’s sibling

• These cases help to avoid some assignment and
copying in an imperative setting

63

