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Leftist Heaps

• Often in a collection of elements we only need to access 
the minimum element

• A data structure that supports access only to the 
minimum element is called a heap: 

• A tree in which the element at the root of each 
subtree is the minimum element of that subtree

• Priority queues are often implemented as heaps
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Leftist Heaps

• Let the rank of a node be the length of its right spine

• Then a leftist heap also satisfies the following property:

• The rank of a left child is no smaller than the rank of 
its sibling
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Consequences of the Leftist 
Property

• The right spine of a node is always the shortest path to 
a leaf

• The right spine of a node contains O(log n) elements in 
the worst case

• The elements along the right spines are in sorted order
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Efficient Merging of Two 
Leftist Heaps

• Intuitively, we can merge two leftist heaps by:

• Merging their right spines as if they were sorted lists

• Swapping child nodes along the merged right spine 
as needed to preserve the leftist property 
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Merge below minimal root to maintain heap invariant.



3

4 7

6 7 9

2

3

5

10 11

Rank 1 

Rank 0 

Rank 1 

Rank 1 Rank 1 

Rank 2 

18

What are our new node ranks?
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Swap sub-trees to maintain rank invariant.



Leftist Heaps
case class Leaf[T <: Ordered[T]]() extends Heap[T] {
def rank = 0
def isEmpty = true

def merge(that: Heap[T]) = that

def min = throw new Error(
"Attempt to call min on an empty heap")

def deleteMin = throw new Error(
"Attempt to call deleteMin on an empty heap")

}
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Leftist Heaps
case class Branch[T <: Ordered[T]](

rank: Int, x: T, left: Heap[T],
right: Heap[T]) extends Heap[T] {

def isEmpty = false

def merge(that: Heap[T]) = {
that match {

case Leaf() => this
case Branch(_, y, l, r) => 

if (x <= y) makeBranch(x, left, right merge that)
else makeBranch(y, l, this merge r)

}
}
def min = x
def deleteMin = left merge right

}
21



Leftist Heaps
abstract class Heap[T <: Ordered[T]] {
def empty = Leaf[T]
def isEmpty: Boolean

def insert(element: T): Heap[T] = 
this merge Branch(1, element, empty, empty)

def merge(that: Heap[T]): Heap[T]

/* require (! isEmpty) */
def min: T

/* require (! isEmpty) */
def deleteMin: Heap[T]

def rank: Int 

def makeBranch(x: T, a: Heap[T], b: Heap[T]) = {
if (a.rank >= b.rank) Branch(b.rank + 1, x, a, b)
else Branch(a.rank + 1, x, b, a)

}
}
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Red-Black Trees
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Red-Black Trees

• With naïve binary search trees, lookup can take O(n) 
time in the worst case

• We can fix this problem by rebalancing the trees as we 
add elements

• Red-Black trees are one approach to keeping the trees 
approximately balanced
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Red-Black Trees

• Every node is colored either red or black

• All leaf nodes are black

• No red node has a red child

• Every path from the root to a leaf contains the same 
number of black nodes
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Red-Black Trees
• These invariants imply that:

• The longest possible path from the root to a leaf 
consists of an alternating sequence of red nodes and 
black nodes

• The shortest possible path from the root to a leaf 
consists of all black nodes

• Thus, there is at most a factor of two difference in 
length between the shortest and longest paths
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Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color
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Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

All subclasses of a sealed class must be defined
in the same file as the sealed class.
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Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

Pattern matching against a sealed class 
is checked to ensure exhaustiveness. 
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Strategy for Insertion

• We insert new elements as usual, but then rebalance 
the tree to maintain the red-black invariants

• At the end of the rebalancing, we recolor the root to 
black

• This last step cannot violate our invariants
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Red-Black Trees

abstract class Tree[T <: Ordered[T]] {
def empty = Leaf[T]
def contains(x: T): Boolean
def insert(x: T): Tree[T] = insertChildren(x) match {
case Branch(c,l,e,r) => Branch(Black, l, e, r)

}
def insertChildren(x: T): Branch[T]

}

We call a helper function insertChildren, 
which performs the insertion and rebalancing.
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Red-Black Trees

abstract class Tree[T <: Ordered[T]] {
def empty = Leaf[T]
def contains(x: T): Boolean
def insert(x: T): Tree[T] = insertChildren(x) match {
case Branch(c,l,e,r) => Branch(Black, l, e, r)

}
def insertChildren(x: T): Branch[T]

}

We take the result from insertChildren, ignore
the color of the root and return a tree that is nearly identical

except that the root is colored black.
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Red-Black Trees

case class Leaf[T <: Ordered[T]]() extends Tree[T] {
def contains(x: T) = false
def insertChildren(x: T) = Branch(Red, this, x, this)

}
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Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T]) 
extends Tree[T] {

def contains(x: T) = {
if (x < element) left contains x
else if (x > element) right contains x
else true // x == element

}
…

}
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Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T]) 
extends Tree[T] {
…
def insertChildren(x: T) = {
if (x < element) 
balance(color, left insertChildren x, element, right)

else if (x > element) 
balance(color, left, element, right insertChildren x)

else this
}
…

}
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Rebalancing

• Because the base case of insertChildren (at a leaf node) 
always inserts a red node, the number of black nodes 
along each path is unaffected

• However, the new tree might contain a red node with a 
red child

37



Rebalancing: 
There are Four Cases to Consider
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Rebalancing: 
There are Four Cases to Consider

c

We use pattern matching to enumerate the cases.
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

…
}

}
…

} 41
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

} 42



def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d

48



def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}
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a b c d
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

}

ZX

Y

a b c d
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
…

ZX

Y

a b c d

55



X

Y

Z
a

b

c d

YX

Z

a b c d

56



def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {

case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

…
}

}
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def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case _ => Branch(c, l, x, r)
}

}
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Red-Black Trees
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T]) 
extends Tree[T] {

…
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d)) 

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d)) 

case _ => Branch(c, l, x, r)
}

}
…

}

Unfortunately, all four consequences are syntactically
identical
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Red-Black Trees
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T]) 
extends Tree[T] {

…
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
(c, l, x, r) match {
case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d)) 

case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) => 
Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d)) 

case _ => Branch(c, l, x, r)
}

}
…

}

In some languages (such as ML) we could factor this 
out with“or” patterns
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Discussion

• This implementation of red-black trees is dramatically 
simpler than most imperative approaches:

• Imperative approaches typically include eight cases, 
branching on the color of the red parent’s sibling

• These cases help to avoid some assignment and 
copying in an imperative setting
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