
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 9, 2017

Mechanical Proof
Checking

Syntax of Propositional Logic

Factory Methods for
Construction

Sequents

Sequents

• Sequents consist of two parts:

• The antecedents to the left of the turnstile

• The consequent to the right of the turnstile

• Example:

Sequents

• When the set of antecedents consists of a single
formula, we often elide the enclosing braces:

• is equivalent to:

Inference Rules

Inference Rules:
General Form

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Inference Rules

Example Proof 1

Example Proof 2

Example Proof 3

Rule Application

The Curry-Howard
Isomorphism

Simply Typed Expressions

E ::= x
| 0 | 1 | 2…
| true | false
| (x:T) => E
| E(E)

Simple Types

T ::= Int
| Boolean
| T => T

Simple Type Assertions

E:T

Simple Type Assertions

0:Int

Simple Type Assertions

true:Boolean

Simple Type Assertions

(x:Int) => x : Int => Int

Simple Type Assertions

x:Boolean

Assertions Within a Type
Environment

{x:Boolean} x:Boolean

Rules for Checking the Type of
an Expression

Rules for Checking the Type of
an Expression

Rules for Checking the Type of
an Expression

Rules for Checking the Type of
an Expression

Contrast with Implies-Intro
For Propositional Logic

Contrast with Implies-Intro
For Propositional Logic

Contrast with Implies-Elim
From Propositional Logic

Contrast with Implies-Elim
From Propositional Logic

Types and Propositions

• We can think of the types in our simple type system as
corresponding to propositions:

• Primitive types (Boolean, Int) correspond to simple
propositions (p, q)

• Arrow types correspond to logic implication:

p -> q, (p -> (q -> r)), etc.

Types and Propositions

• For each syntactic form of expression, there is exactly
one form of rule that contains that syntactic form as its
result

• Example:

Types and Propositions

• If we wish to use type rules to prove that an expression
has a specific type

• We can start with the expression, and apply the rules
backwards:

Types and Propositions

• While working backwards with expressions, there is
only one choice at each step

• Thus a well-typed expression E entirely determines the
form of the proof that E:T

• But the proof of E:T in our type system is equivalent to
a proof of T in propositional logic

Types and Propositions

• So, E effectively encodes a proof of type T, thought of
as a proposition

• Checking the type T of an expression E is equivalent to
proving the validity of T

The Curry-Howard
Isomorphism

• This deep correspondence between types and logical
assertions is known as the Curry-Howard Isomorphism

• This correspondence goes far beyond just propositional
logic, extending to predicate calculus, modal logic, etc.

• This leads to the surprising result that the arrow in
arrow types is really just the implication symbol from
propositional logic!

Scala Types for Prepositional
Logic Operations

Propositional Logic Scala Type
True Any
False Nothing
P ∧ Q Tuple2[P, Q]
P ∨ Q Either[P, Q]
P ⇒Q P => Q

¬ P P => Nothing

