Comp 311 Functional Programming

Nick Vrvilo, Two Sigma Investments Robert "Corky" Cartwright, Rice University

November 9, 2017

Mechanical Proof Checking

Syntax of Propositional Logic

 $\begin{array}{cccc} S & ::= & x \\ & | & S \wedge S \\ & | & S \vee S \\ & | & S \rightarrow S \\ & | & \neg S \end{array}$

Factory Methods for Construction

case object Formulas {

}

- def evar(name: String): Formula
- def and(left: Formula, right: Formula): Formula
- def or(left: Formula, right: Formula): Formula
- def implies(left: Formula, right: Formula): Formula
 def not(body: Formula): Formula

Sequents

$S*\vdash S$

Sequents

- Sequents consist of two parts:
 - The *antecedents* to the left of the turnstile
 - The *consequent* to the right of the turnstile
 - Example:

$$\{p, \ q, \ \neg r, p \to r\} \vdash \neg p$$

Sequents

• When the set of antecedents consists of a single formula, we often elide the enclosing braces:

$$\{p\} \vdash p$$

• is equivalent to:

$$p \vdash p$$

 $\frac{\Gamma \vdash p \quad \Delta \vdash q}{\Gamma \cup \Delta \vdash p \wedge q} \text{ And-Intro}$

Inference Rules: General Form

 $\frac{\Gamma \vdash p \land q}{\Gamma \vdash p} \text{ And-Elim-Left}$

 $\frac{\Gamma \vdash p \land q}{\Gamma \vdash q} \text{ And-Elim-Right}$

 $\frac{\Gamma \vdash p}{\Gamma \vdash p \lor q} \text{ Or-Intro-Left}$

 $\frac{\Gamma \vdash p}{\Gamma \vdash q \lor p} \text{ Or-Intro-Right}$

$\frac{\Gamma \vdash p \lor q \quad \Gamma' \cup \{p\} \vdash r \quad \Gamma'' \cup \{q\} \vdash r}{\Gamma \cup \Gamma' \cup \Gamma'' \vdash r} \text{ Or-Elim}$

$\frac{\Gamma \cup \{p\} \vdash q \quad \Gamma' \cup \{p\} \vdash \neg q}{\Gamma \cup \Gamma' \vdash \neg p} \text{ Neg-Intro}$

 $\frac{\Gamma \vdash \neg \neg p}{\Gamma \vdash p} \text{ Neg-Elim}$

 $\frac{\Gamma \cup \{p\} \vdash q}{\Gamma \vdash p \to q} \text{ Implies-Intro}$

$\frac{\Gamma \vdash p \to q \quad \Gamma' \vdash p}{\Gamma \cup \Gamma' \vdash q} \text{ Implies-Elim}$

 $\frac{}{p \vdash p} \text{ Identity}$

 $\overline{\Gamma \cup \{p\} \vdash p} \text{ Assumption}$

 $\frac{\Gamma \vdash p}{\Gamma \cup \{q\} \vdash p} \text{ Generalization}$

Example Proof 1

$$\frac{---}{p \vdash p} \text{Identity} \\ \frac{}{\emptyset \vdash p \rightarrow p} \text{Implies-Intro}$$

Example Proof 2

Example Proof 3

Rule Application

```
case object Rules {
 def identity(p: Formula): Sequent
 def assumption(s: Sequent): Sequent
 def generalization(p: Formula)(s: Sequent): Sequent
 def andIntro(left: Sequent, right: Sequent): Sequent
 def andElimLeft(s: Sequent): Sequent
 def andElimRight(s: Sequent): Sequent
 def orIntroLeft(p: Formula)(s: Sequent): Sequent
 def orIntroRight(p: Formula)(s: Sequent): Sequent
 def orElim(s0: Sequent, s1: Sequent, s2: Sequent): Sequent
 def negIntro(p: Formula)(s0: Sequent, s1: Sequent): Sequent
 def negElim(s: Sequent): Sequent
 def impliesIntro(s: Sequent): Sequent
 def impliesElim(p: Formula)(s: Sequent): Sequent
```

```
}
```

The Curry-Howard Isomorphism

Simply Typed Expressions

Simple Types

T ::= Int | Boolean | T => T

E:T

0:Int

true:Boolean

(x:Int) => x : Int => Int

x:Boolean

Assertions Within a Type Environment

 ${x:Boolean} \vdash x:Boolean$

 $\frac{n \in \texttt{IntLiteral}}{\Gamma \vdash \texttt{n:Int}} \xrightarrow{\text{T-Int}}$

$$\frac{\Gamma \cup \{\mathbf{x}: \mathbf{S}\} \vdash \mathbf{E}: \mathbf{T}}{\Gamma \vdash (\mathbf{x}: \mathbf{S}) = \mathbf{E} : \mathbf{S} = \mathbf{T}} \text{ T-ABS}$$

 $\frac{\Gamma \vdash E:S=T \quad \Gamma \vdash E':S}{\Gamma \vdash E(E'):T} \quad T-APP$

Contrast with Implies-Intro For Propositional Logic

$$\frac{\Gamma \cup \{p\} \vdash q}{\Gamma \vdash p \to q} \text{ Implies-Intro}$$

$$\frac{\Gamma \cup \{\mathbf{x}: \mathbf{S}\} \vdash \mathbf{E}: \mathbf{T}}{\Gamma \vdash (\mathbf{x}: \mathbf{S}) = \mathbf{E} : \mathbf{S} = \mathbf{T}} \text{ T-ABS}$$

Contrast with Implies-Intro For Propositional Logic

$$\frac{\Gamma \cup \{p\} \vdash q}{\Gamma \vdash p \to q} \text{ Implies-Intro}$$

$$\begin{array}{c|c} \Gamma \cup \{ \ S \} \vdash \ T \\ \hline \Gamma \vdash \ S = T \end{array} T-ABS$$

Contrast with Implies-Elim From Propositional Logic

$$\frac{\Gamma \vdash p \to q \quad \Gamma' \vdash p}{\Gamma \cup \Gamma' \vdash q} \text{ Implies-Elim}$$

$$\frac{\Gamma \vdash E:S=T \quad \Gamma \vdash E':S}{\Gamma \vdash E(E'):T} \quad T-APP$$

Contrast with Implies-Elim From Propositional Logic

$$\frac{\Gamma \vdash p \to q \quad \Gamma' \vdash p}{\Gamma \cup \Gamma' \vdash q} \text{ Implies-Elim}$$

- We can think of the types in our simple type system as corresponding to propositions:
 - Primitive types (Boolean, Int) correspond to simple propositions (p, q)
 - Arrow types correspond to logic implication:

- For each syntactic form of expression, there is exactly one form of rule that contains that syntactic form as its result
- Example:

$$\frac{\Gamma \cup \{\mathbf{x}: \mathbf{S}\} \vdash \mathbf{E}: \mathbf{T}}{\Gamma \vdash (\mathbf{x}: \mathbf{S}) = \mathbf{E} : \mathbf{S} = \mathbf{T}} \text{ T-ABS}$$

- If we wish to use type rules to prove that an expression has a specific type
 - We can start with the expression, and apply the rules backwards:

$$\frac{\overline{\mathbf{x}: \mathbf{T} \vdash \mathbf{x}: \mathbf{T}}}{\emptyset \vdash (\mathbf{x}: \mathbf{T}) \Rightarrow \mathbf{x} : \mathbf{T} \Rightarrow \mathbf{T}} \text{T-ABS}$$

- While working backwards with expressions, there is only one choice at each step
- Thus a well-typed expression E entirely determines the form of the proof that E:T
- But the proof of E:T in our type system is equivalent to a proof of T in propositional logic

- So, E effectively encodes a proof of type T, thought of as a proposition
- Checking the type T of an expression E is equivalent to proving the validity of T

The Curry-Howard Isomorphism

- This deep correspondence between types and logical assertions is known as the *Curry-Howard Isomorphism*
- This correspondence goes far beyond just propositional logic, extending to predicate calculus, modal logic, etc.
- This leads to the surprising result that the arrow in arrow types is really just the implication symbol from propositional logic!

Scala Types for Prepositional Logic Operations

Propositional Logic	Scala Type
True	Any
False	Nothing
$P \land Q$	Tuple2[P, Q]
$P \lor Q$	Either[P, Q]
$P \Longrightarrow Q$	P => Q
¬P	P => Nothing