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Mechanical Proof 
Checking



Syntax of Propositional Logic



Factory Methods for 
Construction



Sequents



Sequents

• Sequents consist of two parts:

• The antecedents to the left of the turnstile

• The consequent to the right of the turnstile

• Example:



Sequents

• When the set of antecedents consists of a single 
formula, we often elide the enclosing braces:

• is equivalent to:



Inference Rules



Inference Rules: 
General Form
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Example Proof 1



Example Proof 2



Example Proof 3



Rule Application



The Curry-Howard 
Isomorphism



Simply Typed Expressions

E ::= x
| 0 | 1 | 2…
| true | false
| (x:T) => E
| E(E)



Simple Types

T ::= Int
| Boolean
| T => T



Simple Type Assertions

E:T



Simple Type Assertions

0:Int



Simple Type Assertions

true:Boolean



Simple Type Assertions

(x:Int) => x : Int => Int



Simple Type Assertions

x:Boolean



Assertions Within a Type 
Environment

{x:Boolean}  x:Boolean



Rules for Checking the Type of 
an Expression
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Rules for Checking the Type of 
an Expression



Contrast with Implies-Intro 
For Propositional Logic
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Contrast with Implies-Elim 
From Propositional Logic



Contrast with Implies-Elim 
From Propositional Logic



Types and Propositions

• We can think of the types in our simple type system as 
corresponding to propositions:

• Primitive types (Boolean, Int) correspond to simple 
propositions (p, q)

• Arrow types correspond to logic implication:

p -> q, (p -> (q -> r)), etc.



Types and Propositions

• For each syntactic form of expression, there is exactly 
one form of rule that contains that syntactic form as its 
result

• Example:



Types and Propositions

• If we wish to use type rules to prove that an expression 
has a specific type

• We can start with the expression, and apply the rules 
backwards:



Types and Propositions

• While working backwards with expressions, there is 
only one choice at each step

• Thus a well-typed expression E entirely determines the 
form of the proof that E:T

• But the proof of E:T in our type system is equivalent to 
a proof of T in propositional logic



Types and Propositions

• So, E effectively encodes a proof of type T, thought of 
as a proposition

• Checking the type T of an expression E is equivalent to 
proving the validity of T



The Curry-Howard 
Isomorphism

• This deep correspondence between types and logical 
assertions is known as the Curry-Howard Isomorphism

• This correspondence goes far beyond just propositional 
logic, extending to predicate calculus, modal logic, etc.

• This leads to the surprising result that the arrow in 
arrow types is really just the implication symbol from 
propositional logic!



Scala Types for Prepositional 
Logic Operations

Propositional Logic Scala Type
True Any
False Nothing
P ∧ Q Tuple2[P, Q]
P ∨ Q Either[P, Q]
P ⇒Q P => Q

¬ P P => Nothing


