Comp 311
 Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert "Corky" Cartwright, Rice University

November 9, 2017

Mechanical Proof Checking

Syntax of Propositional Logic

$$
\begin{array}{l:l}
S::= & x \\
& \mid \\
\hline & S \wedge S \\
& S \vee S \\
& S \rightarrow S \\
& \\
& \neg S
\end{array}
$$

Factory Methods for

Construction

case object Formulas \{ def evar(name: String): Formula def and(left: Formula, right: Formula): Formula def or (left: Formula, right: Formula): Formula def implies(left: Formula, right: Formula): Formula def not(body: Formula): Formula

Sequents

$S * \vdash S$

Sequents

- Sequents consist of two parts:
- The antecedents to the left of the turnstile
- The consequent to the right of the turnstile
- Example:

$$
\{p, q, \neg r, p \rightarrow r\} \vdash \neg p
$$

Sequents

- When the set of antecedents consists of a single formula, we often elide the enclosing braces:

$$
\{p\} \vdash p
$$

- is equivalent to:

$$
p \vdash p
$$

Inference Rules

$$
\frac{\Gamma \vdash p \quad \Delta \vdash q}{\Gamma \cup \Delta \vdash p \wedge q} \text { AND-INTRO }
$$

Inference Rules: General Form

$\frac{Q *}{Q}$

Inference Rules

$\frac{\Gamma \vdash p \wedge q}{\Gamma \vdash p}$ And-ELIM-LEFT

Inference Rules

$\frac{\Gamma \vdash p \wedge q}{\Gamma \vdash q}$ And-Elim-Right

Inference Rules

$$
\frac{\Gamma \vdash p}{\Gamma \vdash p \vee q} \text { OR-INTRO-LEFT }
$$

Inference Rules

$$
\frac{\Gamma \vdash p}{\Gamma \vdash q \vee p} \text { OR-Intro-RIGHT }
$$

Inference Rules

$$
\frac{\Gamma \vdash p \vee q \quad \Gamma^{\prime} \cup\{p\} \vdash r \quad \Gamma^{\prime \prime} \cup\{q\} \vdash r}{\Gamma \cup \Gamma^{\prime} \cup \Gamma^{\prime \prime} \vdash r} \text { OR-ELIM }
$$

Inference Rules

$$
\frac{\Gamma \cup\{p\} \vdash q \quad \Gamma^{\prime} \cup\{p\} \vdash \neg q}{\Gamma \cup \Gamma^{\prime} \vdash \neg p} \text { NEG-INTRO }
$$

Inference Rules

$\frac{\Gamma \vdash \neg \neg p}{\Gamma \vdash p}$ Neg-ELIM

Inference Rules

$$
\frac{\Gamma \cup\{p\} \vdash q}{\Gamma \vdash p \rightarrow q} \text { ImPLIES-INTRO }
$$

Inference Rules

$$
\frac{\Gamma \vdash p \rightarrow q \quad \Gamma^{\prime} \vdash p}{\Gamma \cup \Gamma^{\prime} \vdash q} \text { IMPLIES-ELIM }
$$

Inference Rules

\author{

- IDENTITY
}

Inference Rules

$\overline{\Gamma \cup\{p\} \vdash p}$ Assumption

Inference Rules

$$
\frac{\Gamma \vdash p}{\Gamma \cup\{q\} \vdash p} \text { Generalization }
$$

Example Proof 1

$$
\frac{\overline{p \vdash p}}{\emptyset \vdash p \rightarrow p} \text { Imentity }
$$

Example Proof 2

$$
\begin{array}{cl}
\overline{p \rightarrow q \vdash p \rightarrow q} \text { IDENTITY } & \overline{p \vdash p} \text { IDENTITY } \\
\{p, p \rightarrow q\} \vdash q & \text { IMPLIES-ELIM }
\end{array}
$$

Example Proof 3

Rule Application

```
case object Rules {
    def identity(p: Formula): Sequent
    def assumption(s: Sequent): Sequent
    def generalization(p: Formula)(s: Sequent): Sequent
    def andIntro(left: Sequent, right: Sequent): Sequent
    def andElimLeft(s: Sequent): Sequent
    def andElimRight(s: Sequent): Sequent
    def orIntroLeft(p: Formula)(s: Sequent): Sequent
    def orIntroRight(p: Formula)(s: Sequent): Sequent
    def orElim(s0: Sequent, s1: Sequent, s2: Sequent): Sequent
    def negIntro(p: Formula)(s0: Sequent, s1: Sequent): Sequent
    def negElim(s: Sequent): Sequent
    def impliesIntro(s: Sequent): Sequent
    def impliesElim(p: Formula)(s: Sequent): Sequent
}
```


The Curry-Howard Isomorphism

Simply Typed Expressions

$$
\begin{aligned}
& \text { E : : = x } \\
& \text { | } 0 \text { | } 1 \text { | 2... } \\
& \text { true | false } \\
& \text { (x:T) => E } \\
& \text { E(E) }
\end{aligned}
$$

Simple Types

T : := Int
| Boolean
| T => T

Simple Type Assertions

E:T

Simple Type Assertions

$0:$ Int

Simple Type Assertions

true:Boolean

Simple Type Assertions

(x:Int) => x : Int => Int

Simple Type Assertions

x:Boolean

Assertions Within a Type Environment

$\{x: B o o l e a n\} \vdash x: B o o l e a n$

Rules for Checking the Type of an Expression

$n \in$ IntLiteral $\Gamma \vdash \mathrm{n}$: Int

Rules for Checking the Type of an Expression

$\overline{\Gamma \vdash \text { true:Boolean }}$ T-TruE
$\overline{\Gamma \vdash \text { false:Boolean }}$ T-FALSE

Rules for Checking the Type of an Expression

$$
\frac{\Gamma \cup\{x: S\} \vdash E: T}{\Gamma \vdash(x: S)=>E: S=>T} T-A B S
$$

Rules for Checking the Type of an Expression

$$
\frac{\Gamma \vdash \mathrm{E}: \mathrm{S}=>\mathrm{T} \quad \Gamma \vdash \mathrm{E}^{\prime}: \mathrm{S}}{\Gamma \vdash \mathrm{E}\left(\mathrm{E}^{\prime}\right): \mathrm{T}} \mathrm{~T}-\mathrm{APP}
$$

Contrast with Implies-Intro For Propositional Logic

$$
\begin{gathered}
\frac{\Gamma \cup\{p\} \vdash q}{\Gamma \vdash p \rightarrow q} \text { ImPLIES-INTRO } \\
\frac{\Gamma \cup\{\mathrm{x}: \mathrm{S}\} \vdash \mathrm{E}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}: \mathrm{S})=>\mathrm{E}: \mathrm{S}=>\mathrm{T}} \mathrm{~T}-\mathrm{ABS}
\end{gathered}
$$

Contrast with Implies-Intro For Propositional Logic

$$
\frac{\Gamma \cup\{p\} \vdash q}{\Gamma \vdash p \rightarrow q} \text { ImPLIES-INTRO }
$$

$$
\frac{\Gamma \cup\{\square \mathrm{S}\} \vdash \mathrm{T}}{\Gamma \vdash} \mathrm{~S}=>\mathrm{T}-\mathrm{ABS}
$$

Contrast with Implies-Elim From Propositional Logic

$$
\frac{\Gamma \vdash p \rightarrow q \quad \Gamma^{\prime} \vdash p}{\Gamma \cup \Gamma^{\prime} \vdash q} \text { IMPLIES-ELIM }
$$

$$
\frac{\Gamma \vdash \mathrm{E}: \mathrm{S}=>\mathrm{T} \quad \Gamma \vdash \mathrm{E}^{\prime}: \mathrm{S}}{\Gamma \vdash \mathrm{E}\left(\mathrm{E}^{\prime}\right): \mathrm{T}} \mathrm{~T}-\mathrm{ApP}
$$

Contrast with Implies-Elim From Propositional Logic

$$
\frac{\Gamma \vdash p \rightarrow q \quad \Gamma^{\prime} \vdash p}{\Gamma \cup \Gamma^{\prime} \vdash q} \text { Implies-ELIM }
$$

$$
\frac{\Gamma \vdash \square \mathrm{S}=>\mathrm{T}}{\Gamma \vdash \square \mathrm{~S}} \mathrm{\Gamma} \mathrm{~T}-\mathrm{APP}
$$

Types and Propositions

- We can think of the types in our simple type system as corresponding to propositions:
- Primitive types (Boolean, Int) correspond to simple propositions (p, q)
- Arrow types correspond to logic implication:

$$
p->q,(p->(q->r)), \text { etc. }
$$

Types and Propositions

- For each syntactic form of expression, there is exactly one form of rule that contains that syntactic form as its result
- Example:

$$
\frac{\Gamma \cup\{\mathrm{x}: \mathrm{S}\} \vdash \mathrm{E}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}: \mathrm{S})=>\mathrm{E}: \mathrm{S}=>\mathrm{T}} \mathrm{~T}-\mathrm{ABS}
$$

Types and Propositions

- If we wish to use type rules to prove that an expression has a specific type
- We can start with the expression, and apply the rules backwards:

$$
\frac{\overline{\mathrm{x}: \mathrm{T} \vdash \mathrm{x}: \mathrm{T}} \mathrm{~T}-\text { Identity }}{\emptyset \vdash(\mathrm{x}: \mathrm{T}) \Rightarrow \mathrm{x}: \quad \mathrm{T} \Rightarrow \mathrm{~T}} \mathrm{~T}-\mathrm{ABS}
$$

Types and Propositions

- While working backwards with expressions, there is only one choice at each step
- Thus a well-typed expression E entirely determines the form of the proof that $\mathrm{E}: \mathrm{T}$
- But the proof of E:T in our type system is equivalent to a proof of T in propositional logic

Types and Propositions

- So, E effectively encodes a proof of type T, thought of as a proposition
- Checking the type T of an expression E is equivalent to proving the validity of T

The Curry-Howard Isomorphism

- This deep correspondence between types and logical assertions is known as the Curry-Howard Isomorphism
- This correspondence goes far beyond just propositional logic, extending to predicate calculus, modal logic, etc.
- This leads to the surprising result that the arrow in arrow types is really just the implication symbol from propositional logic!

Scala Types for Prepositional Logic Operations

Propositional Logic	Scala Type
True	Any
False	Nothing
$\mathrm{P} \wedge \mathrm{Q}$	Tuple2[P, Q]
$\mathrm{P} \vee \mathrm{Q}$	Either[P, Q]
$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P}=>\mathrm{Q}$
$\neg \mathrm{P}$	$\mathrm{P}=>$ Nothing

