
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 14, 2017



Review:
Pseudo-Random Number Generation

• There are many approaches to generating a pseudo-
random stream of Int values

• One common approach is to define a linear congruential 
generator (LCG):

• The pseudo-random numbers are the elements of this 
recurrence



Linear Congruential 
Generators

• LCGs can produce generators capable of passing formal 
tests for randomness

• The quality of the results is highly dependent on the 
initial values selected

• Poor statistical properties

• Not well suited for cryptographic purposes



A Linear Congruent Generator 
(C++11 minstd_rand)

def makeRandomGenerator(): () => Int = {
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2

def inner() = {
seed = (a*seed + b) % m
seed

}
inner

}

4



A Linear Congruent Generator 
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ↦
val g = 
< def inner() = {

seed = (a*seed + b) % m
seed

} ,
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 >

5



g()<E> ↦
< def inner() = {

seed = (a*seed + b) % m
seed

} ,
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 3 >()<E> ↦



seed = (a*seed + b) % m
seed, 
< val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 3 >

↦
seed = (48271*2 + 0) % Int.MaxValue
seed, 
< val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 3 > 

↦



seed, <val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 96542> 

↦
96542

And now the environment closing over
generator g binds seed to 96542.



Purely Functional State



Rolling a Die

• Suppose we want to implement a function that 
simulates the rolling of a six-sided die

• The result of calling the function should be a random 
number from 1 to 6



Rolling a Die

def rollDie: Int = {
val rng = new scala.util.Random
rng.nextInt(6) + 1

}

The call to nextInt will return a value from 0 to 5,
not 1 to 6..



Stateful Programs and 
Debugging

• Because of the state encapsulated in our random 
number generator:

• Repeatability of testing is hard

• Bugs are difficult to reduce

• We would like to use effects when necessary without 
losing the benefits of referential transparency



Purely Functional Random 
Number Generation

trait RandomNumberGenerator {
def nextInt: (Int, RandomNumberGenerator)

}



Purely Functional Random 
Number Generation

case class SimpleRNG(seed: Int) extends RandomNumberGenerator {
val a = 48271
val b = 0
val m = Int.MaxValue

def nextInt: (Int, RandomNumberGenerator) = {
val newSeed = (a*seed + b) % m
val newRNG = SimpleRNG(newSeed)
(newSeed, newRNG)

}
}



Threading State Through
a Sequence of Statements

val rng = SimpleRNG(3)
val (n, rng2) = rng.nextInt
(n + 1, rng2)



Transforming Stateful APIs to 
Functional APIs

trait Foo {
private var s: State = MyState
def bar: Bar
def baz: Int

}

becomes

trait Foo {
def bar: (Bar, FooState)
def baz: (Int, FooState)

}



A Better API for State Actions

• Explicitly threading state from one function application 
to the next is tedious and error prone

• We would like to define combinators that pass the state 
from one application to the next automatically

• For now, we consider the state of our program to be 
defined entirely by the state of our random number 
generator



A Dream

val rng = SimpleRNG(3)

veryHelpfulFunction(
val n = rng.nextInt,
n + 1

)



A Dream

val rng = SimpleRNG(3)

veryHelpfulFunction {
val n = rng.nextInt,
n + 1

}



A Dream

val rng = SimpleRNG(3)

veryHelpfulFunction {
val n = rng.nextInt,
n + 1

}
↦
(4, rng1)



A More Realistic Dream

val rng = SimpleRNG(3)

veryHelpfulFunction {
rng.nextInt,
(n: Int) => n + 1

}
↦
(4, rng1)



A More Realistic Dream

val rng = SimpleRNG(3)

def run = veryHelpfulFunction {
_.nextInt,
(n: Int) => n + 1

}

run(rng)
↦
(4, rng1)



Defining a Type Alias for State 
Actions

type StateAction[+A] = 
RandomNumberGenerator => (A, RandomNumberGenerator)



A Simple State Action

val nextInt: StateAction[Int] = _.nextInt



Transforming State Actions 
With the Map Combinator

def veryUsefulFunction[A,B](action: StateAction[A],
f: A => B): StateAction[B] =

state => {
val (a, state2) = action(state)
(f(a), state2)

}



Transforming State Actions 
With the Map Combinator

def map[A,B](action: StateAction[A],
f: A => B): StateAction[B] =

state => {
val (a, state2) = action(state)
(f(a), state2)

}



Transforming State Actions 
With the Map Combinator

case class StateAction[S,+A](run: S => (A,S))
extends Function1[S,(A,S)] {

def apply(s:S) = run(s)

def map[B](f: A => B): StateAction[S,B] =
StateAction { s: S =>

val (a, s2) = run(s)
(f(a), s2)

}
}



Reformulating nextInt as a 
State Action

val nextInt = 
StateAction {
(rng: RandomNumberGenerator) => rng.nextInt

}



A Simple State Action

val nextInt = StateAction(_.nextInt)



A More Realistic Dream

val rng = SimpleRNG(6)

def run = rng.nextInt.map {
(n: Int) => n + 1

}



A More Realistic Dream

val rng = SimpleRNG(6)

def run = {
for { 
n <- rng.nextInt

}
yield n + 1

}



A More Realistic Dream

val rng = SimpleRNG(6)

def run = {
for { 
n <- _.nextInt

}
yield n + 1

}

run(rng)



A “Compound” State Action

def nonNegativeInt = {
for {
n <- _.nextInt

} yield {
if (n == Int.MinValue) 0
else if (n < 0) -n
else n

}
}



Using Map

def nonNegativeEven: StateAction[Int] =
for {
i <- nonNegativeInt

} 
yield i - (i % 2)



Random Non-Negative 
Numbers in a Range

(Attempt 1)

// INCORRECT
def nonNegativeLessThan(n: Int): StateAction[Int] = 

for {
i <- nonNegativeInt

}
yield i % n

This definition skews the results because
Int.MaxValue might not be divisible by n.



Random Non-Negative 
Numbers in a Range

(Attempt 2)

// INCORRECT
def nonNegativeLessThan(n: Int): StateAction[Int] = 

for {
i <- nonNegativeInt

} yield 
val mod = i % n
if (i + (n - 1) - mod >= 0) mod 
else nonNegativeLessThan(n)

}

But this version does not pass type checking!



Random Non-Negative 
Numbers in a Range

(Attempt 2)

• The problem with our Attempt 2 is that the recursive 
call to nonNegativeLessThan produces a 
StateAction[Int]

• Our map combinator expects an Int result from the 
mapped function, not a StateAction[Int]

• To get a better idea as to how to define 
nonNegativeLessThan, let us try defining it 
without combinators



Random Non-Negative 
Numbers in a Range

(Attempt 3)

def nonNegativeLessThan(n: Int): StateAction[Int] = { rng => 
val (i, rng2) = nonNegativeInt(rng)
val mod = i % n
if (i + (n - 1) - mod >= 0) (mod, rng2)
else nonNegativeLessThan(n)(rng2)

}

This version works, but now we are back to threading
state explicitly.

We need a new combinator.



StateAction with FlatMap

case class StateAction[S,+A](run: S => (A,S)) 
extends Function1[S,(A,S)] {
def apply(s:S) = run(s)

def map[B](f: A => B): StateAction[S,B] = StateAction { s =>
val (a, s2) = run(s)
(f(a), s2)

}

def flatMap[B](f: A => StateAction[S,B]): StateAction[S,B] = 
StateAction { s => 
val (a, s2) = run(s) 
f(a)(s2)

}
}



Every Partial Application of the 
StateAction Type Defines a Monad

type RNGStateAction[A] = 
StateAction[RandomNumberGenerator, A]



Random Non-Negative 
Numbers in a Range

(Attempt 4)

def nonNegativeLessThan(n: Int): StateAction[Int] = { 
nonNegativeInt.flatMap { i => 

val mod = i % n
if (i + (n - 1) - mod >= 0) (mod, _)
else nonNegativeLessThan(n)

}
}

We have almost completely eliminated state threading,
except for one underscore.



Random Non-Negative 
Numbers in a Range

(Attempt 4)

• We now have the inverse of our earlier problem:

• Our flatMap combinator expects a 
StateAction[Int] result from the mapped 
function, not an Int

• We can address this problem by wrapping part of the 
flatMapped function in an application of the unit 
constructor for StateActions



A “No-Op” Abstraction Over 
State Actions

def unit[A](a: A): StateAction[A] = 
rng => (a, rng)

def rngUnit[A](a: A): RngStateAction[A] = 
StateAction(s => (a, s))



Random Non-Negative 
Numbers in a Range

(Attempt 5)

def nonNegativeLessThan4point5(n: Int): 
StateAction[RandomNumberGenerator,Int] = {

nonNegativeInt.flatMap { i => 
val result = i % n
if (i + (n - 1) - result >= 0) unit(result)
else nonNegativeLessThan5(n)

}
}



Random Non-Negative 
Numbers in a Range

(Attempt 5)

def nonNegativeLessThan4point5(n: Int): 
StateAction[RandomNumberGenerator,Int] = {

nonNegativeInt.flatMap { i => 
val result = i % n
if (i + (n - 1) - result >= 0) unit(result)
else nonNegativeLessThan5(n)

} map (j => j)
}

A trailing map of the identity function defines
an equivalent function.



Using For-Expression Syntax

def nonNegativeLessThan(n: Int): RngStateAction[Int] = { 
for {

i <- nonNegativeInt
result <- {
val randN = i % n
if (i + (n - 1) - randN >= 0) unit(randN)
else nonNegativeLessThan(n) 

}
}
yield result

}



A General StateAction Class

case class StateAction[S,+A](run: S => (A,S)) 
extends Function1[S,(A,S)] {
def apply(s:S) = run(s)

def map[B](f: A => B): StateAction[S,B] = StateAction { s =>
val (a, s2) = run(s)
(f(a), s2)

}

def flatMap[B](f: A => StateAction[S,B]): StateAction[S,B] = 
StateAction { s => 
val (a, s2) = run(s) 
f(a)(s2)

}
} This is the key right here! The flatMap method 

does the work of threading the updated state.

The map method similarly applies the operation f 
and pairs the result with the updated state.



Revisiting RollDie

def rollDie: StateAction[Int] = nonNegativeLessThan(6)



Revisiting RollDie

def rollDie: StateAction[Int] = 
map(nonNegativeLessThan(6))(_ + 1)



Revisiting RollDie

def rollDie = 
for {
i <- nonNegativeLessThan(6)

}
yield (i + 1)


