Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 16, 2017

Announcements

Homework 5:

Assigned today! (PDF description on Piazza)

This homework is unchanged from last year

Due the last day of class

You can use all of your remaining slip days on this

Homework 6:

Optional (can replace a bad score on previous homework)

Due with Homework 5, or 12/8 (w

The final is December 8t" in Duncan

NIC

Ha

never is later)

| 1064 at 2pm

Some Additional Scala
Features

Scripting in Scala

Scala is designed for building large-scale systems
It also scales down to small scripts:

In a single file, we can place class definitions,
function definitions, and even top-level expressions

Scripting in Scala

. In asingle file hello.scala, write:

println(“Hello, scripting world!"”)

. From the command-line (in an environment where

scala has been installed):

scala hello.scala

Scripting in Scala

. Command-line arguments are available via a global

array named args:
println(“Hello, " + args(0) + “I")

Scripting in Scala

. At the shell:

scala hello.scala Owls

. And the result is:

Hello, Owls!

Scripting in Scala

. On Unix, you can run a Scala script directly from the shell by
putting a shebang at the top of your script:

#!'/usr/bin/env scala

println("hello")

. Then make the file executable (let’s name the file he 1l 10):

chmod u+x hello

Scala Applications
The “Java” Way

. To compile a stand-alone Scala application, you can put

the driver into a singleton object with a main method

Scala Applications

. Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp31l.lectures.lecture2?

object ArgLengths {
def main(args: Array[String]): Unit = {
for (arg <- args)
println(arg + ": " + arg.length)

Scala Applications
The "Scala” Way

. To compile a stand-alone Scala application, you can put

the driver into a singleton object with the App trait

. All code in the body of the object (i.e., the “constructor”
code) is run when the app is launched

Scala Applications

. Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp31l.lectures.lecture2?

object ArgLengths extends App {
for (arg <- args) {
println(arg + ": " + arg.length)
}\

For loops (no yeild keyword) are only for side-effects.
Just syntactic sugar for the foreach method.

Scala Applications

. Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp31l.lectures.lecture2?

object ArgLengths extends App {
args foreach { arg =>
println(arg + ": " + arg.length)
}
}

Scala Applications

Compile using scalac or fsc
. scalac will recompile all referenced jars, files,...
Therefore, it can be slow

» TS starts a process the first time it is run that
memoizes compilation of referenced files

Scala Applications

Execute a compiled classfile using the scala
command

Include the full path name

scala edu.rice.cs.comp3ll.lectures.lecture22.ArgLengths

Fields in Non-Case Classes

. constructor of a class is a function:

. When it is called, the enclosing environment is
extended and an object is returned, as defined by the
body of the class

Fields in Non-Case Classes

A natural consequence:
The arguments to a constructor call are not directly
accessible outside the object that is returned from
the call

To make a parameter accessible, define a field

Case classes automatically define a field for every
constructor parameter

The Follow Code Will Not Pass
Type Checking

class Rational (numerator: Int, denominator: Int) {
def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denomilnator,
denominator * that.denominator)

Declaring the Fields Explicitly
Fixes The Problem

class Rational(n: Int, d: Int) {
val numerator = n
val denominator = d
def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)

Auxiliary Constructors

Scala allows for multiple constructor declarations

Additional constructors are defined as methods with
name this

The first action of an auxiliary constructor must be to
invoke another constructor

Only constructors defined earlier in the class
definition are in scope

Auxiliary Constructors

class Rational(n: Int, d: Int) {
val numerator = n
val denominator = d

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)

Auxiliary Constructors

class Rational(
val numerator: Int,
val denominator: Int) {

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)

Companion Objects

. A class can be given a companion object:
. A ssingleton object definition with the same name
. Must be defined in the same file as the class

. The object and class share private members

Companion Objects and
Factory Methods

. Companion objects are well-suited for defining factory
methods:

object Rational {
def apply(n: Int, d: Int) =
if (d !'= 0) new Rational(n, d)
else throw new Error("Given a zero denominator")

Private Primary Constructors

. Primary constructors can be hidden by prefixing them
with the keyword private:

class Rational private(n: Int, d: Int) {
val numerator = n
val denominator = d

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)

Private Constructors and
Companion Objects

V V V.V

Rational(l,1)
Rational(1,0)

new Rational(1l,2)
new Rational(2)

//
//
//
//

ok
error

error
ok

Extractors

Extractors

It is possible to control how an object will interact with
pattern matching through the use of extractors

Extractors are objects that define an unapply method,
which takes an object and returns an option of one or

more elements

Extractors

object Rational {
def apply(n: Int, d: Int) = {
if (d '= 0) new Rational(n, d)
else throw new Error("Given a zero denominator")

}

def unapply(qg: Rational): Option[(Int, Int)] = {
Some((q.numerator, q.denominator))

}
}

Extractors

. An unapply method is called in a pattern by prefixing
the name of the extractor object followed by a tuple of
expected elements

. If the unapply method returns Some((x1,...xN)) and the
arity of the tuple (x1,..xN) matches the number of
bound variables in the pattern, we have a match

Extractors

class Rational private(n: Int, d: Int) {
val numerator = n
val denominator = d

def +(that: Rational) = {
that match {
case Rational(n2,d2) =>
Rational(n * d2 + n2 * d,
d * d2)

Case Classes Revisited

. We are now in a position to better explain what a case class definition is
given implicitly:

Immutable fields for every parameter
. Structural equals and hashCode methods
. A structural toString method
. A companion object with apply and unapply methods

. A COpY method with parameters for each constructor parameter,
defaulted to the field values of the receiver

Extractors vs Case Classes

Explicit extractors are more verbose than using case classes
However, they have advantages of their own:
separates implementation from pattern matching
can deconstruct objects outside of their class definitions
can perform more sophisticated deconstruction

e.g. regular expression matching on strings

Extractors vs Case Classes

. Case classes also have many advantages:

. Conciseness

Performance: Scala compiler optimizes patterns with
case classes aggressively

Combinator Parsing

Combinator Parsing

. Sometimes there are situations in which we need to

process expressions in a small ad-hoc language
. Configuration files for your program

. An input language to your program such as search
queries

Combinator Parsing

. Options:

Roll your parser
Requires significant expertise and time
Use a parser generator (ANTLR)

. Many advantages but also requires learning and
wiring up a new tool into your program

Combinator Parsing

. Another option:

. Define an internal domain-specific language
. Consists of a library of parser combinators:

. Scala functions and operators that serve as the
building blocks for parsers

Combinator Parsing

. Each combinator corresponds to one production of a

context-free grammar

Arithmetic Expressions

expr ::= term {“+"” term | “-" term}.
term ::= factor {“*"” factor | “/" factor}.
factor ::= floatingPointNumber | “(” expr “)”".

Arithmetic Expressions

expr ::=.term {“+"” term | “-" term}.
term ::= tor {“*" factor | “/" factor}.
factor ::= atingPointNumber | “(” expr “)".

Denotes definition of a production

Arithmetic Expressions

expr ::= term {“+"” term | “-" term}.
term ::= factor {“*"” factor , “/" factor}.
factor ::= floatingPointNumber | “(” expr “)”.

74

Denotes alternatives

Arithmetic Expressions

expr ::= term {“+"” term | “-" term}.
term ::= factor {“*"” factor | “/* factor}.
factor ::= floatingRointNumber | “(” expr “)".

Denotes zero or more repetitions

Arithmetic Expressions

expr ::= term {“+"” term | “-" term}.
term ::= factor {“*"” factor | “/" factor}.
factor ::= floatingPointNumber | “(” expr “)”".

Square brackets [| denote optional occurrences (not used here).

Example Arithmetic Expression

2 *3+4*5 -0

A Formal Grammar for
Arithmetic Expressions in BNF

expr ::= term {“+"” term | “-" term}.
term ::= factor {“*"” factor | “/* factor}.
factor ::= floatingRointNumber | “(” expr “)".

Denotes one or more repetitions

Example Arithmetic Expression

2 kK3 4+ 4 %5 -

N

factors

Arithmetic Expressions

expr ::= term {“+"” term | “-" term}.
term ::= factor {“*"” factor | “/* factor}.
factor ::= floatingRointNumber | “(” expr “)".

Denotes one or more repetitions

Example Arithmetic Expression

V4

terms

) X

Arithmetic Expressions

expr ::= term {“+"” term | “-" term}.
term ::= factor {“*"” factor | “/* factor}.
factor ::= floatingRointNumber | “(” expr “)".

Denotes one or more repetitions

Example Arithmetic Expression

2 * 3|+|4 * 5/|- 6

expressions

This Grammar Encodes
Operator Precedence

. Expressions contain terms

. Terms contain factors

. Factors only contain expressions if they are enclosed in

parentheses

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator.

class Arith extends JavaTokenParsers {

def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator.

class Arith extends JavaTokenParsers {

def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A parser for floating point numbers inherited from
JavaTokenParsers.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator.

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] factgqr~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = flgatingPointNumber | "("~expr~")"
}

A combinator that takes two parsers and returns a new parser

that first applies the left parser to its input,
then its right to whatever remains.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator.

class Arith extends JavaTokenParsers {
def expr: Parser[Any] term~rep("+"~term | "-"~term)
def term: Parser[Any] factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatipgPointNumber | "("~expr~")"

}

This combinator is overloaded so that string arguments
are converted to simple parsers that match the string.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator.

class Arith extends JavaTokenParsers {
def expr: Parser[Any] term~rep("+"~term | "-"~term)
def term: Parser[Any] factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPoiptNumber | "("~expr~")"
}

A combinator that takes two parsers and returns a new parser
that first applies the left parser to its input, and returns the result,
unless the left parser fails (then it applies the right parser).

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator.

class Arith extends JavaTokenParsers {

def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factorirep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

|

A combinator that takes a parser and repeatedly applies it to the
input as many times as possible.

To Convert a Grammar to a
Definition with Parser Combinators

. Every production becomes a method
. The result of each method is Parser[Any]

. Insert the explicit operator ~ between two consecutive symbols of a
production

. Represent repetition with calls to the function rep instead of { }

. Represent repetitions with a separator with calls to the function
repsep

. Represent optional occurrences with Opt instead of []

Exercising Our Parser

object ParseExpr extends Arith {
def main(args: Array[String]) = {
println("1nput: " + args(0))
println(parseAll(expr, args(0)))
}
}

An Example Parse of
Grammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6
input: 2*3+4*5-6
[1.10] parsed: ((2~List((*~3)))~List((+~(4~List((*~5)))), (-~(6~List()))))

An Example Parse of
Ungrammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6)
-bash: syntax error near unexpected token)’

What is Returned from a
Parser

Parsers built from strings return the string (if it matches)

~ combinator returns both results
as elements of a case class named ~

. (with a toString that places the ~ infix)

| combinator returns the result of whichever succeeds
rep operator returns a list of its results

opt operator returns an Option of its result

Transforming the Output of a
Parser

. The "" combinator transforms the result of a parser:

Let P be a parser that returns a result of type R

Let f be a function that takes an argument of type R
P f

. Returns a parser that applies P, takes the result and
applies f to it

Transforming the Output of a
Parser

floatingPointNumber ~* (.toDouble)

Transforming the Output of a
Parser

“true” ™ (x => true)

Parsing JSON

Many processes need to exchange complex data with
other processes (often over a network)

We need a portable way to represent the structure of
data so that processes can conveniently send data
amongst themselves

One popular alternative is JSON

the Javascript Object Notation

Parsing JSON

. A JSON object is a sequence of members separated by
commas and enclosed in braces

Each member is a string/value pair, separated by a
colon

. A JSON array is a sequence of values separated by
commas and enclosed in square brackets

JSON Example

“address book” : {

“name” : “Eva Luate”,

“address” : {
“street” : “6100 Main St”
“city” : “Houston TX”,
“zip” : 77005

}

“phone numbers”: |
“555 555-5555",
“555 555-6666"

]
}

A Simple JSON Parser

class JSON extends JavaTokenParsers {

def value: Parser[Any] = {
obj | arr | stringLiteral |

floatingPointNumber | "null" | "true" | "false"
gef obj: Parser[Any] = "{"~repsep(member, ",")~"}"
def arr: Parser[Any] = "["~repsep(value, ",")~"1"
def member: Parser[Any] = stringLiteral~":"~value

Mapping JSON to Scala

. We would like to parse JSON objects into Scala objects as follows:
. A JSON object is represented as aMap[String, Any]
. A JSON array is represented as a LISt [Any]

. A JSON string is represented as a String

. A JSON numeric literal is represented as a Double

. The values true, false, null are represented as
corresponding Scala values

