
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 16, 2017

Announcements
• Homework 5:

• Assigned today! (PDF description on Piazza)

• This homework is unchanged from last year

• Due the last day of class

• You can use all of your remaining slip days on this

• Homework 6:

• Optional (can replace a bad score on previous homework)

• Due with Homework 5, or 12/8 (whichever is later)

• The final is December 8th in Duncan Hall 1064 at 2pm

Some Additional Scala
Features

Scripting in Scala

• Scala is designed for building large-scale systems

• It also scales down to small scripts:

• In a single file, we can place class definitions,
function definitions, and even top-level expressions

Scripting in Scala

• In a single file hello.scala, write:

• From the command-line (in an environment where
scala has been installed):

println(“Hello, scripting world!”)

scala hello.scala

Scripting in Scala

• Command-line arguments are available via a global
array named args:

println(“Hello, ” + args(0) + “!”)

Scripting in Scala

• At the shell:

• And the result is:

scala hello.scala Owls

Hello, Owls!

Scripting in Scala

• On Unix, you can run a Scala script directly from the shell by
putting a shebang at the top of your script:

• Then make the file executable (let’s name the file hello):

#!/usr/bin/env scala

println("hello“)

chmod u+x hello

Scala Applications
The “Java” Way

• To compile a stand-alone Scala application, you can put
the driver into a singleton object with a main method

Scala Applications

• Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp311.lectures.lecture22

object ArgLengths {
def main(args: Array[String]): Unit = {
for (arg <- args)
println(arg + ": " + arg.length)

}
}

Scala Applications
The “Scala” Way

• To compile a stand-alone Scala application, you can put
the driver into a singleton object with the App trait

• All code in the body of the object (i.e., the “constructor”
code) is run when the app is launched

Scala Applications

• Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp311.lectures.lecture22

object ArgLengths extends App {
for (arg <- args) {
println(arg + ": " + arg.length)

}
}

For loops (no yeild keyword) are only for side-effects.
Just syntactic sugar for the foreach method.

Scala Applications

• Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp311.lectures.lecture22

object ArgLengths extends App {
args foreach { arg =>
println(arg + ": " + arg.length)

}
}

Scala Applications

• Compile using scalac or fsc

• scalac will recompile all referenced jars, files,…

• Therefore, it can be slow

• fsc starts a process the first time it is run that
memoizes compilation of referenced files

Scala Applications

• Execute a compiled classfile using the scala
command

• Include the full path name

scala edu.rice.cs.comp311.lectures.lecture22.ArgLengths

Fields in Non-Case Classes

• constructor of a class is a function:

• When it is called, the enclosing environment is
extended and an object is returned, as defined by the
body of the class

Fields in Non-Case Classes

• A natural consequence:

• The arguments to a constructor call are not directly
accessible outside the object that is returned from
the call

• To make a parameter accessible, define a field

• Case classes automatically define a field for every
constructor parameter

The Follow Code Will Not Pass
Type Checking

class Rational(numerator: Int, denominator: Int) {
def +(that: Rational) =
new Rational(numerator * that.denominator +

that.numerator * denominator,
denominator * that.denominator)

}

Declaring the Fields Explicitly
Fixes The Problem

class Rational(n: Int, d: Int) {
val numerator = n
val denominator = d

def +(that: Rational) =
new Rational(numerator * that.denominator +

that.numerator * denominator,
denominator * that.denominator)

}

Auxiliary Constructors

• Scala allows for multiple constructor declarations

• Additional constructors are defined as methods with
name this

• The first action of an auxiliary constructor must be to
invoke another constructor

• Only constructors defined earlier in the class
definition are in scope

Auxiliary Constructors

class Rational(n: Int, d: Int) {
val numerator = n
val denominator = d

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +

that.numerator * denominator,
denominator * that.denominator)

}

Auxiliary Constructors

class Rational(
val numerator: Int,
val denominator: Int) {

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +

that.numerator * denominator,
denominator * that.denominator)

}

Companion Objects

• A class can be given a companion object:

• A singleton object definition with the same name

• Must be defined in the same file as the class

• The object and class share private members

Companion Objects and
Factory Methods

• Companion objects are well-suited for defining factory
methods:

object Rational {
def apply(n: Int, d: Int) =

if (d != 0) new Rational(n, d)
else throw new Error("Given a zero denominator")

}

Private Primary Constructors

• Primary constructors can be hidden by prefixing them
with the keyword private:

class Rational private(n: Int, d: Int) {
val numerator = n
val denominator = d

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +

that.numerator * denominator,
denominator * that.denominator)

}

Private Constructors and
Companion Objects

> Rational(1,1) // ok
> Rational(1,0) // error
> new Rational(1,2) // error
> new Rational(2) // ok

Extractors

Extractors

• It is possible to control how an object will interact with
pattern matching through the use of extractors

• Extractors are objects that define an unapply method,
which takes an object and returns an option of one or
more elements

Extractors

object Rational {
def apply(n: Int, d: Int) = {
if (d != 0) new Rational(n, d)
else throw new Error("Given a zero denominator")

}

def unapply(q: Rational): Option[(Int, Int)] = {
Some((q.numerator, q.denominator))

}
}

Extractors

• An unapply method is called in a pattern by prefixing
the name of the extractor object followed by a tuple of
expected elements

• If the unapply method returns Some((x1,…xN)) and the
arity of the tuple (x1,…xN) matches the number of
bound variables in the pattern, we have a match

Extractors

class Rational private(n: Int, d: Int) {
val numerator = n
val denominator = d

def +(that: Rational) = {
that match {
case Rational(n2,d2) =>
Rational(n * d2 + n2 * d,

d * d2)
}

}
}

Case Classes Revisited

• We are now in a position to better explain what a case class definition is
given implicitly:

• Immutable fields for every parameter

• Structural equals and hashCode methods

• A structural toString method

• A companion object with apply and unapply methods

• A copy method with parameters for each constructor parameter,
defaulted to the field values of the receiver

Extractors vs Case Classes

• Explicit extractors are more verbose than using case classes

• However, they have advantages of their own:

• separates implementation from pattern matching

• can deconstruct objects outside of their class definitions

• can perform more sophisticated deconstruction

• e.g. regular expression matching on strings

Extractors vs Case Classes

• Case classes also have many advantages:

• Conciseness

• Performance: Scala compiler optimizes patterns with
case classes aggressively

Combinator Parsing

Combinator Parsing

• Sometimes there are situations in which we need to
process expressions in a small ad-hoc language

• Configuration files for your program

• An input language to your program such as search
queries

Combinator Parsing

• Options:

• Roll your parser

• Requires significant expertise and time

• Use a parser generator (ANTLR)

• Many advantages but also requires learning and
wiring up a new tool into your program

Combinator Parsing

• Another option:

• Define an internal domain-specific language

• Consists of a library of parser combinators:

• Scala functions and operators that serve as the
building blocks for parsers

Combinator Parsing

• Each combinator corresponds to one production of a
context-free grammar

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes definition of a production

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes alternatives

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes zero or more repetitions

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Square brackets [] denote optional occurrences (not used here).

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

A Formal Grammar for
Arithmetic Expressions in BNF

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

factors

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

terms

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

expressions

This Grammar Encodes
Operator Precedence

• Expressions contain terms

• Terms contain factors

• Factors only contain expressions if they are enclosed in
parentheses

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A parser for floating point numbers inherited from
JavaTokenParsers.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A combinator that takes two parsers and returns a new parser
that first applies the left parser to its input,

then its right to whatever remains.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

This combinator is overloaded so that string arguments
are converted to simple parsers that match the string.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A combinator that takes two parsers and returns a new parser
that first applies the left parser to its input, and returns the result,

unless the left parser fails (then it applies the right parser).

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A combinator that takes a parser and repeatedly applies it to the
input as many times as possible.

To Convert a Grammar to a
Definition with Parser Combinators

• Every production becomes a method

• The result of each method is Parser[Any]

• Insert the explicit operator ~ between two consecutive symbols of a
production

• Represent repetition with calls to the function rep instead of { }

• Represent repetitions with a separator with calls to the function
repsep

• Represent optional occurrences with opt instead of []

Exercising Our Parser

object ParseExpr extends Arith {
def main(args: Array[String]) = {
println("input: " + args(0))
println(parseAll(expr, args(0)))

}
}

An Example Parse of
Grammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6
input: 2*3+4*5-6
[1.10] parsed: ((2~List((*~3)))~List((+~(4~List((*~5)))), (-~(6~List()))))

An Example Parse of
Ungrammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6)
-bash: syntax error near unexpected token `)'

What is Returned from a
Parser

• Parsers built from strings return the string (if it matches)

• ~ combinator returns both results
• as elements of a case class named ~
• (with a toString that places the ~ infix)

• | combinator returns the result of whichever succeeds

• rep operator returns a list of its results

• opt operator returns an Option of its result

Transforming the Output of a
Parser

• The ^^ combinator transforms the result of a parser:

• Let P be a parser that returns a result of type R

• Let f be a function that takes an argument of type R

• Returns a parser that applies P, takes the result and
applies f to it

P^^f

Transforming the Output of a
Parser

floatingPointNumber ^^ (_.toDouble)

Transforming the Output of a
Parser

“true” ^^ (x => true)

Parsing JSON

• Many processes need to exchange complex data with
other processes (often over a network)

• We need a portable way to represent the structure of
data so that processes can conveniently send data
amongst themselves

• One popular alternative is JSON

• the Javascript Object Notation

Parsing JSON

• A JSON object is a sequence of members separated by
commas and enclosed in braces

• Each member is a string/value pair, separated by a
colon

• A JSON array is a sequence of values separated by
commas and enclosed in square brackets

JSON Example
{
“address book” : {
“name” : “Eva Luate”,
“address” : {
“street” : “6100 Main St”
“city” : “Houston TX”,
“zip” : 77005

},
“phone numbers”: [
“555 555-5555”,
“555 555-6666”

]
}

}

A Simple JSON Parser

class JSON extends JavaTokenParsers {
def value: Parser[Any] = {

obj | arr | stringLiteral |
floatingPointNumber | "null" | "true" | "false"

}
def obj: Parser[Any] = "{"~repsep(member, ",")~"}"

def arr: Parser[Any] = "["~repsep(value, ",")~"]"

def member: Parser[Any] = stringLiteral~":"~value
}

Mapping JSON to Scala

• We would like to parse JSON objects into Scala objects as follows:

• A JSON object is represented as a Map[String,Any]

• A JSON array is represented as a List[Any]

• A JSON string is represented as a String

• A JSON numeric literal is represented as a Double

• The values true, false, null are represented as
corresponding Scala values

