
Scala Immutable 
Collections

import scala.collection.immutable._



Immutable Lists

• much like the lists we have defined in class 

• Lists are covariant 

• The empty list is written Nil 

• Nil extends List[Nothing]



Immutable Lists

• constructor takes a variable number of arguments: 

List(1,2,3,4,5,6)



Immutable Lists

• Non-empty lists are built from Nil and Cons  
• written as the right-associative operator :: 

1 :: 2 :: 3 :: 4 :: Nil
↦ 

(1 :: (2 :: (3 :: (4 :: Nil))))



List Operations

• head returns the first element 

• tail returns a list of elements but the first 

• isEmpty returns true if the list is empty 

• Many of the methods we have defined are available 
on the built-in lists



FoldLeft and FoldRight as 
Operators

• foldLeft: 

• foldRight:

(zero /: xs) op

(xs :\ zero) op



Sort

List(1,2,3,4,5,6) sortWith (_ < _)



Range

List.range(1,5)



Using Fill for Uniform Lists

List.fill(10)(0) ↦
List(0,0,0,0,0,0,0,0,0,0) 



Using Fill for Uniform Lists

List.fill(3,3)(0) ↦

List(List(0,0,0),
     List(0,0,0),
     List(0,0,0)) 



Tabulating Lists

List.tabulate(3,3) (
  (m,n) => if (m == n) 1 else 0)
) 
↦
List(List(1,0,0),
     List(0,1,0),
     List(0,0,1)) 



Immutable Sets



Immutable Sets

• unordered, unrepeated collections of elements 

• parametric and covariant in their element type



Immutable Sets

Set(1,2,3,4,5)



Immutable Sets

Set(1,2,3) + 4 ↦
Set(1,2,3,4)



Immutable Sets

Set(1,2,3) - 2 ↦
Set(1,3)



Immutable Sets

Set(1,2,3) - 4 ↦
Set(1,2,3)



Immutable Sets

Set(1,2,3) ++ Set(2,4,5) ↦
Set(1,2,3,4,5)



Immutable Sets

Set(1,2,3) -- Set(2,4,5,3) ↦
Set(1)



Immutable Sets

Set(1,2,3) & Set(2,4,5,3) ↦
Set(2,3)



Immutable Sets

Set(1,2,3).size ↦
3



Immutable Sets

Set(1,2,3).contains(2) ↦
true



Immutable Maps



Immutable Maps

• collections of key/value pairs 

• parametric in both the key and value type 

• Invariant in their key type 

• Covariant in their value type



The -> Operator
• The infix operator -> returns a pair of its 

arguments: 

1 -> 2
↦

(1,2)



-> is Left Associative

1 -> 2 -> 3 -> 4
↦

(((1,2),3),4)



The Map Constructor

Map(“a” -> 1, “b” -> 2, “c” -> 3) 
↦

Map(a -> 1, b -> 2, c -> 3)



Map Addition

Map(“a” -> 1, “b” -> 2, “c” -> 3) + (“d” -> 4) 
↦

Map(a -> 1, b -> 2, c -> 3, d -> 4)



Map Operations

• The operators -, ++, --, size are defined in 
the expected way



Map Search

Map(“a” -> 1, “b” -> 2, “c” -> 3).contains(“b”)
↦

true



Map Access

Map(“a” -> 1, “b” -> 2, “c” -> 3)(“c”)
↦
3



Map keys

Map(“a” -> 1, “b” -> 2, “c” -> 3).keys
↦

Set(a, b, c):Iterable[String]



Map values

Map(“a” -> 1, “b” -> 2, “c” -> 3).values
↦

MapLike(1,2,3):Iterable[Int]



Map emptiness

Map(“a” -> 1, “b” -> 2, “c” -> 3).isEmpty
↦

false



Traits



Traits

• Traits provide a way to factor out common behavior 
among multiple classes and mix it in where 
appropriate



Trait Definitions
• Syntactically, a trait definition looks like a class 

definition but with the keyword “trait” 

trait Echo {
  def echo(message: String) =
    message
}



Trait Definitions
• Traits can declare fields and full method definitions 

• They must not include constructors 

trait Echo {
  val language = “Portuguese"
  def echo(message: String) =
    message
}



Using Traits
• Classes “mix in” traits using either the extends or 
with keywords

class Parrot extends Echo {
  def fly() = {
    // forget to fly and talk instead
    echo(“Polly wants a cracker”)
  }
}



Using Traits
• Classes “mix in” traits using either the extends or 
with keywords

class Parrot extends Bird with Echo {
  def fly() = {
    // forget to fly and talk instead
    echo(“Polly wants a cracker”)
  }
}



Using Traits
• Classes “mix in” traits using either the extends or 
with keywords

trait Smart {
  def somethingClever() = 
    “better a witty fool than a foolish wit”
}



Using Traits
• Classes can mix in multiple traits using either the 
with keywords

class Parrot extends Bird with Echo 
with Smart {
  def fly() = {
    // forget to fly and talk instead
    echo(somethingClever())
  }
}



Thin vs Rich Interfaces
• Traits provide a way to resolve the tension between 

“thin” and “rich” interfaces: 

• Thin interface: Include only essential methods in an 
interface 

• Good for implementors 

• Rich interface: Include a rich set of methods in an 
interface 

• Good for clients



Thin vs Rich Interfaces

• With traits, we can define an interface to include 
only a small number of essential methods, but then 
include traits to build rich functionality based on the 
essential methods 

• Implementors win 

• Clients win



Thin vs Rich Interfaces
• Consider our implementations of Interval, Rational, 

Measurement 

• We want to include all comparison operators on 
them: 

<  <=  >=  >

• With traits, we could define just one operator < 
and mix in a trait to define the rest in terms of <



Thin vs Rich Interfaces
case class Measurement(magnitude: BigDecimal,
                       unit: PhysicalUnit) 
extends Ordered[Measurement]

  def compare(that: Measurement) = 
    val (u,m1,m2) = this.unit commonUnits that.unit
    (m1 * magnitude) - (m2 * that.magnitude)
  }
  …
}



Traits as Stackable Modifiers

abstract class IntMap {
  def insert(s: String, n: Int): IntMap
  def retrieve(s: String): Int
}



Traits as Stackable Modifiers
case class IntListMap(elements: List[(String,Int)] = Nil) 
extends IntMap {

  def insert(s: String, n: Int): IntMap = 
    IntListMap((s -> n) :: elements)

  def retrieve(s: String) = {
    def retrieve(xs: List[(String, Int)]): Int = {
      xs match {
        case Nil => throw new IllegalArgumentException(s)
        case (t, n) :: ys if (s == t) => n
        case y :: ys => retrieve(ys)
      }
    }
    retrieve(elements)
  }
}



Traits as Stackable Modifiers

trait Incrementing extends IntMap {
  abstract override def insert(s: String, n: Int) =    
    super.insert(s, n + 1)
}

This super call depends on how the trait is  
mixed into a particular class



Traits as Stackable Modifiers

trait Filtering extends IntMap {
  abstract override def insert(s: String, n: Int) = {
    if (n >= 0) super.insert(s, n)
    else this
  }
}

As does this one



Traits as Stackable Modifiers

> val m = new IntListMap() with Incrementing with Filtering
m: IntListMap with Incrementing with Filtering = IntListMap(List())

The order in which the traits are listed is important. 
The trait furthest to the right is called first



Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List())



Traits as Stackable Modifiers

> res0.retrieve("a")
java.lang.IllegalArgumentException: a



Traits as Stackable Modifiers

> val m = new IntListMap() with Filtering with Incrementing
m: IntListMap with Filtering with Incrementing = IntListMap(List())

Now we have reversed the order



Traits as Stackable Modifiers

> m.insert("a", 1)
res2: IntMap = IntListMap(List((a,2)))



Traits as Stackable Modifiers

> res2.retrieve("a")
res3: Int = 2



Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List((a,0)))

Now the integer is incremented before filtering, 
and so it passes the filter



Traits as Stackable Modifiers

> res0.retrieve("a")
res5: Int = 0



Traits vs Multiple 
Inheritance



Traits vs Multiple Inheritance
• The key property of traits that distinguishes them 

from multiple inheritance is linearization 

• With traditional multiple inheritance, which 
implementation of insert would be called: 

 

class MyMap() extends IntListMap() with Filtering 
with Incrementing

new MyMap().insert("b",2)



Traits vs Multiple Inheritance

• With traits, the effect of a super call is determined 
by the linearization of traits, which enables: 

• Multiple trait implementation of the same method 
to be called 

• Multiple ways to compose the traits depending 
on circumstances



Trait Linearization

• To linearize class C 

• Linearize class D 

• Extend with the linearization of T1, leaving out classes already 
linearized 

• Continue until extending with the linearization of TN, leaving out 
classes already linearized 

• Finally, extend with the body of class C 

class C() extends D() with T1… with TN {
   …
}



Trait Linearization

class Furniture
trait Soft extends Furniture
trait Antique extends Furniture
trait Victorian extends Antique
class VictorianChair extends Furniture with Soft with Victorian



Linearization of Furniture
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft



Linearization of Soft
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft



Linearization of Victorian
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft



Linearization of VictorianChair
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft



Guidelines on Using Traits

• Use concrete classes when the behavior is not 
reused  

• Use traits to capture behavior that is reused in 
multiple, unrelated classes 

• If clients will inherit the behavior, try to make it an 
abstract class


