Scala Immutable
Collections

import scala.collection.immutable._



'/mmutabple LiIsts

much like the lists we have defined in class
Lists are covariant

The empty list is written N1 L

Nil extends L1st[Nothing]



'/mmutabple LiIsts

e constructor takes a variable number of arguments:

L1st(1,2,3,4,5,6)



'/mmutabple LiIsts

* Non-empty lists are built from Nil and Cons
* written as the right-associative operator : :

1 :: 2 :: 3 :: 4 :: Nil

(1 :: (2 :: (3 :: (4 :: NiL))))



List Operations

head returns the first element
tail returns a list of elements but the first
1SsEmpty returns true if the list is empty

Many of the methods we have defined are available
on the built-in lists



FoldLeft and FoldRight as
Operators

e foldlLeft:

(zero /: Xs) op

. foldRight:

(xs :\ zero) op



Sort

L1st(1,2,3,4,5,6) sortWith (_ < _)



Range

List.range(1,5)



Using Fill for Uniform Lists

List.f111(10)(0) ~
L1st(0,0,0,0,0,0,0,0,0,0)



Using Fill for Uniform Lists

LiSt.fill(3,3)(®) >

L1st(L1st(0,0,0),
L1st(0,0,0),
L1st(0,0,0))



Tabulating Lists

List.tabulate(3,3) (
(m,n) => 1f (m == n) 1 else 0)
)

L1st(L1st(1,0,0),
L1st(0,1,0),
L1st(0,0,1))



'mmutable Sets



'mmutable Sets

* unordered, unrepeated collections of elements

* parametric and covariant in their element type



'mmutable Sets

Set(1,2,3,4,5)



'mmutable Sets

Set(1,2,3) + 4 »
Set(1,2,3,4)



'mmutable Sets

Set(1,2,3) - 2 »
Set(1,3)



'mmutable Sets

Set(1,2,3) - 4 »
Set(1,2,3)



'mmutable Sets

Set(1,2,3) ++ Set(Z2,4,5) »
Set(1,2,3,4,5)



'mmutable Sets

Set(1,2,3) -- Set(2,4,5,3) ~
Set(1)



'mmutable Sets

Set(1,2,3) & Set(2,4,5,3) ~
Set(2,3)



'mmutable Sets

Set(1,2,3).s1ze ~
3



'mmutable Sets

Set(1,2,3).contains(2) ~
true



Immutable Maps



Immutable Maps

* collections of key/value pairs
* parametric in both the key and value type
* |[nvariant in their key type

e Covariant in their value type



The -> Operator

ne infix operator -> returns a pair of its

rguments:

1 > 2

(1,2)



-> |S Left Associative

1 >2 >3 > 4

(((1,2),3),4)



The Map Constructor

MCIPC“CI” -S> 1, “h” _s 2, “e» _S 3)

Map(a -> 1, b -> 2, ¢ -> 3)



Map Adadition

MGPC“CI” -S> 1, “h” _s 2, “e» o_s 3) n C“d” -S> 4)

Map(a -> 1, b -> 2, ¢ -> 3, d -> 4)



Map Operations

 The operators -, ++, --, S1lze are defined in
the expected way



Map Search

Map(“a” -> 1, “b” -> 2, “c” -> 3).contains(“b”)

>

true



Map Access

Map<“a” -> 1, “b” -> 2, “C” -> 3><“C”)



Map Keys

Map(“a” -> 1, “b” -> 2, “c” -> 3).keys

Set(a, b, c):Iterable[String]



Map values

Map(“a” -> 1, “b” -> 2, “c” -> 3).values

MapLike(1l,2,3):Iterable[Int]



Map emptiness

Map(“a” -> 1, “b” -> 2, “c” -> 3).1isEmpty

>

false



Traits



Traits

* Jraits provide a way to factor out common behavior
among multiple classes and mix it in where
appropriate



Trait Definitions

e Syntactically, a trait definition looks like a class
definition but with the keyword “trait”

trait Echo {
def echo(message: String) =
message



Trait Definitions

e Traits can declare fields and full method definitions

* They must not include constructors

trait Echo {
val language = “Portuguese”
def echo(message: String) =

message




Using Traits

* Classes “mix in” traits using either the extends or
with keywords

class Parrot extends Echo {
def fly(Q) = {
// forget to fly and talk 1instead
echo(“Polly wants a cracker?”)

¥
¥



Using Traits

* Classes “mix in” traits using either the extends or
with keywords

class Parrot extends Bird with Echo {
def fly(Q) = {
// forget to fly and talk 1instead
echo(“Polly wants a cracker?”)

¥
¥



Using Traits

* Classes “mix in” traits using either the extends or
with keywords

trait Smart {
def somethingClever() =
“better a witty fool than a foolish wit”



Using Traits

* Classes can mix in multiple traits using either the
with keywords

class Parrot extends Bird with Echo
with Smart {
def fly(Q) = {
// forget to fly and talk 1instead
echo(somethingClever())

¥
¥



Thin vs Rich Interfaces

e [raits provide a way to resolve the tension between
‘thin” and “rich” interfaces:

e Thin interface: Include only essential methods in an
interface

* Good for implementors

e Rich interface: Include a rich set of methods in an
INnterface

e Good for clients



Thin vs Rich Interfaces

* With traits, we can define an interface to include
only a small number of essential methods, but then

include traits to build rich functionality based on the
essential methods

* Implementors win

e Clients win



1Thin vs Rich

INnterfaces

* Consider our implementations of Interval, Rational,

Measurement

 We want to include all comparison operators on

them:

< <=

>= >

* With traits, we could define just one operator <

and mix in a trait to defl

ne the rest in terms of <



Thin vs Rich Interfaces

case class Measurement(magnitude: BigDecimal,
unit: PhysicalUnit)
extends Ordered[Measurement]

def compare(that: Measurement) =
val Cu,ml,m2) = this.unit commonUnits that.unit
(ml * magnitude) - (m2 * that.magnitude)

}



Traits as Stackable Modifiers

abstract class IntMap {
def insert(s: String, n: Int): IntMap
def retrieve(s: String): Int

¥



Traits as Stackable Modifiers

case class IntListMap(elements: List[(String,Int)] = Nil)
extends IntMap {

def insert(s: String, n: Int): IntMap =
IntListMap((s -> n) :: elements)

def retrieve(s: String) = {
def retrieve(xs: List[(String, Int)]): Int = {
xs match {
case N1l => throw new IllegalArgumentException(s)
case (t, n) :: ys 1f (s == t) => n
case y :: ys => retrieve(ys)
¥
¥
retrieve(elements)
¥
¥



Traits as Stackable Modifiers

trait Incrementing extends IntMap {
abstract override def insert(s: String, n: Int) =
super.insert(s, n + 1)
} \
This super call depends on how the trait is
mixed into a particular class



Traits as Stackable Modifiers

trait Filtering extends IntMap {
abstract override def insert(s: String, n: Int) = {
1f (n >= 0) super.insert(s, n)
else this
ks
¥

As does this one



Traits as Stackable Modifiers

> val m = new IntListMap() with Incrementing with Filtering
m: IntListMap with Incrementing/with Filtering = IntListMap(List())

The order in which the traits are listed is important.
The trait furthest to the right is called first



Traits as Stackable Modifiers

> m.1insert("a", -1)
res@: IntMap = IntListMap(List())



Traits as Stackable Modifiers

> res@.retrieve('a")
java.lang.IllegalArgumentException: a



Traits as Stackable Modifiers

> val m = new IntListMap() with Filtering with Incrementing
m: IntListMap with Filtering with Incrementing = IntListMap(List())

Now we have reversed the order



Traits as Stackable Modifiers

> m.insert("a", 1)
resZ: IntMap = IntListMap(List((a,2)))



Traits as Stackable Modifiers

> resZ.retrieve("a")
res3: Int = 2



Traits as Stackable Modifiers

> m.1insert("a", -1)
res@: IntMap = IntListMap(List((a,0)))

Now the integer is incremented before filtering,
and so it passes the filter



Traits as Stackable Modifiers

> res@.retrieve("a")
res5: Int = 0



Traits vs Multiple
INnheritance



Traits vs Multiple Inheritance

* [he key property of traits that distinguishes them
from multiple inheritance is linearization

e With traditional multiple inheritance, which
implementation of insert would be called:

class MyMap() extends IntListMap() with Filtering
with Incrementing

new MyMap().1insert("b",2)



Traits vs Multiple Inheritance

e With traits, the effect of a super call is determined
by the linearization of traits, which enables:

* Multiple trait implementation of the same method
to be called

* Multiple ways to compose the traits depending
on circumstances



Tralt Linearization

class C() extends D() with T1.. with TN {

¥

e To linearize class C
e Linearize class D

o Extend with the linearization of T1, leaving out classes already
linearized

« Continue until extending with the linearization of TN, leaving out
classes already linearized

* Finally, extend with the body of class C



Tralt Linearization

class Furniture
trait Soft extends Furniture
trait Antique extends Furniture

trait Victorian extends Antique
class VictorianChair extends Furniture with Soft with Victorian



L Inearization of Furniture

Any
AnyRef

Antique T
Furniture

Victorian Soft

VictorianChair



| Inearization of Soft

Any
AnyRef

Antique T
Furniture

Victorian Soft

VictorianChair



| Inearization of Victorian

Any
AnyRef

Antique T
Furniture

Victorian Soft

VictorianChair



| Inearization of VictorianChair

Any
AtJRef
il

Antique
Furniture

Victorian _

™ VictorianChair



Guidelines on Using Traits

e Use concrete classes when the behavior 1s not
reuseqd

* Use traits to capture behavior that is reused In
multiple, unrelated classes

e |f clients will inherit the behavior, try to make it an
abstract class



