
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sağnak Taşırlar, Two Sigma Investments

Tactical Theorem
Proving

Tactical Theorem Proving

• The approach of starting with the end goal in a
proof and working backwards has applicability
beyond type checking

• In the general case, there might be more than one
rule that could apply

• Thus, we cannot expect to prove every theorem
simply by working backwards from the goal

A Tactical Theorem Prover

• A tactical proof assistant allows us to interactively
solve a proof by working backwards from goals

• We start with a single goal

• Every time we apply a tactic, we might solve some
goals but also generate new subgoals

Tactical Theorem Proving

• We define a tactic to be a function that takes a
collection of one or more goals and returns a pair
consisting of:

• A partial proof of one of the goals

• A collection of goals

Tactical Theorem Proving

• A partial proof of a goal is a function that:

• Takes one or more sequents as arguments and

• Returns the goal sequent by applying only
inference rule functions to its arguments

• Applying this function effectively checks the
validity of the proof

Tactical Theorem Proving

• The collection of goals returned by a tactic might
include:

• Some of the goals passed to the tactic

• Some new goals produced by the tactic

The Type of a Tactic

• We define the type ProofState as consisting of a
set of goal sequents:

type ProofState = List[Sequent]

The Type of a Tactic

• We define the type PartialProof as a function
from a list of Sequents to a Sequent

type PartialProof = List[Sequent] => Sequent

The Type of a Tactic

• The PartialProof has a “hole” in it for each sequent
in its parameter list

• The sequents to fill these holes must be supplied
via their own proofs

type PartialProof = List[Sequent] => Sequent

The Type of a Tactic

• We could now define tactics to be functions from
ProofStates to pairs of PartialProofs with
ProofStates:

type Tactic = ProofState => (PartialProof, ProofState)

The Type of a Tactic
• Equivalently, we can say that the Tactic type is a

monad

• It can be defined as an application of StateAction:

def tactic(state: ProofState => (PartialProof, ProofState)) =
 StateAction[ProofState, PartialProof](state)

An Example Tactic for
Assumption

 val assumptionTactic = tactic {
 (proofState: ProofState) => {
 proofState match {
 case ((gamma :- a) :: goals) =>
 def partialProof(proofs: List[Sequent]) = {
 assumption(gamma :- a)
 }
 (partialProof, goals)
 case _ => throw TacticError(…)
 }
 }
 }

An Example Tactic for
Assumption

 val andTactic = tactic {
 (proofState: ProofState) => {
 proofState match {
 case ((gamma :- (a /\ b)) :: goals) =>
 def partialProof(proofs: List[Sequent]) = {
 proofs match {
 case proofA :: proofB :: Nil =>
 andIntro(proofA, proofB)
 case _ => throw ProofError(…)
 }
 }
 (partialProof, (gamma :- a) :: (gamma :- b) :: goals)
 case _ => throw TacticError(…)
 }
 }
 }

An Example Manual Proof
Session Using Tactics

 val seq = (p + empty :- p)
 val proof = assumptionTactic(List(seq))
 proof._1(Nil)

An Example Proof Session
Using Map

val seq = (p + empty :- p)

assumptionTactic.map(partialProof => partialProof(Nil)) {
 List(seq)
}

An Example Proof Session
Using For Expressions

 val seq = (p + empty :- p)

 val strategy = for {
 partialProof <- assumptionTactic
 } yield partialProof(Nil)

 strategy(seq)

An Example Manual Proof
Session Using Tactics

 val seq = (p + (q + empty)) :- (p /\ q)
 val proofState = List(seq)
 val step1 = andTactic(proofState)
 val step2 = assumptionTactic(step1._2)
 val step3 = assumptionTactic(step2._2)

 step1._1(List(step2._1(Nil), step3._1(Nil)))

An Example Proof Session
Using Map and Flatmap

 val seq = (p + (q + empty)) :- (p /\ q)

 andTactic.flatMap(step1 =>
 assumptionTactic.flatMap(step2 =>
 assumptionTactic.map(step3 =>
 step1(List(step2(Nil),step3(Nil))))))
 (List(seq))

An Example Proof Session
Using For Expressions
 val seq = (p + (q + empty)) :- (p /\ q)

 val strategy = for {
 step1 <- andTactic
 step2 <- assumptionTactic
 step3 <- assumptionTactic
 }
 yield step1(List(step2(Nil),
 step3(Nil)))

 strategy(List(seq))

