
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 12 10 October 2013

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
2 2

Acknowledgments!
•  Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
— http://www.cs.rice.edu/~ken/comp515/

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
3 3

Enhancing Fine-Grained Parallelism
(contd)!

Chapter 5 of Allen and Kennedy

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
4 4

Recap!
•  More transformations to expose more fine-grained parallelism

— Node Splitting
— Recognition of Reductions
— Index-Set Splitting
— Run-time Symbolic Resolution
— Loop Skewing

•  Unified framework to generate vector code
•  Note: these transformations are useful for generating other

forms of parallel code as well (beyond vector)

Previous lecture

This lecture

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
5 5

Run-time Symbolic Resolution!
•  “Breaking Conditions”

!

DO I = 1, N !!

!A(I+L) = A(I) + B(I)!

ENDDO!

Transformed to..!

IF(L.LE.0 .OR. L.GT.N) THEN!

!A(L+1:N+L) = A(1:N) + B(1:N)!

ELSE!

!DO I = 1, N !!

! A(I+L) = A(I) + B(I)!

!ENDDO!

ENDIF!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
6 6

Run-time Symbolic Resolution!
•  Identifying minimum number of breaking conditions to break a

recurrence is NP-hard
— NOTE: in practice, this can be more important for conditions

related to pointer aliasing than for array subscripts

•  Heuristic:
— Identify when a critical dependence can be conditionally eliminated

via a breaking condition

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
7 7

Loop Skewing!

•  Reshape Iteration Space to uncover parallelism

DO I = 1, N!

!DO J = 1, N !

! ! !(=,<) !!

S:! A(I,J) = A(I-1,J) + A(I,J-1)!

! !(<,=)!

!ENDDO!

ENDDO!

!

Parallelism not apparent!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
8 8

Loop Skewing!
•  Dependence Pattern before loop skewing

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
9 9

Loop Skewing!
•  Do the following transformation called loop skewing

!
jj=J+I or J=jj-I!

!

DO I = 1, N!

!DO jj = I+1, I+N !!

 J = jj - I (=,<)!

S:! A(I,J) = A(I-1,J) + A(I,J-1)!

! !(<,<)!

!ENDDO!

ENDDO!

!

Note: Direction Vector Changes, but statement body remains the same!

(Examples in textbook usually copy propagate J=jj-I in all uses of J)!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
10 1
0

Loop Skewing!
•  Dependence pattern after loop skewing

—  Replace j by jj in figure below

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
11 1
1

Loop Skewing!
DO I = 1, N ! DV = { (<,<), (=, <) }!

!DO jj = I+1, I+N !

S:! !A(I,jj-I) = A(I-1,jj-I) + A(I,jj-I-1)!

!ENDDO!

ENDDO!

Loop interchange to..!

DO jj = 2, N+N ! DV = { (<,<), (<, =) }!

!DO I = max(1,jj-N), min(N,jj-1) !

S:! !A(I,jj-I) = A(I-1,jj-I) + A(I,jj-I-1)!

!ENDDO!

ENDDO!

Vectorize to..!

DO jj = 2, N+N!

!FORALL I = max(1,jj-N), min(N,jj-1) !

S:! !A(I,jj-I) = A(I-1,jj-I) + A(I,jj-I-1)!

!END FORALL!

ENDDO!

11

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
12 1
2

Loop Skewing!
•  Disadvantages:

— Varying vector length
–  Not profitable if N is small

— If vector startup time is more than speedup time, this is not profitable
— Vector bounds must be recomputed on each iteration of outer loop

•  Apply loop skewing if everything else fails

•  We will later study Unimodular and Polyhedral transformations, which
include generalizations of loop skewing

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
13 1
3

Chapter 5: Putting It All Together!
•  Good Part

— Many transformations imply more choices to exploit parallelism

•  Bad Part
— Choosing the right transformation
— How to automate transformation selection process?
— Interference between transformations

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
14 1
4

Putting It All Together!
•  Example of Interference!

DO I = 1, N!

!DO J = 1, M !!

! !S(I) = S(I) + A(I,J)!

!ENDDO!

ENDDO!

!

Sum Reduction gives..!

DO I = 1, N !!

!S(I) = S(I) + SUM (A(I,1:M))!

ENDDO!

!

While Loop Interchange and Vectorization gives..!

DO J = 1, N !!

!S(1:N) = S(1:N) + A(1:N,J)!

ENDDO!

14

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
15 1
5

Putting It All Together!
•  Any algorithm which tries to tie all transformations must

— Take a global view of transformed code
— Know the architecture of the target machine

•  Goal of our algorithm
— Finding ONE good vector loop in each loop nest [works well for most

vector register architectures]

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
16 1
6

Unified Framework!
•  Detection: finding ALL loops for EACH statement that can be

run in vector
•  Selection: choosing best loop for vector execution for EACH

statement
•  Transformation: carrying out the transformations necessary to

vectorize the selected loop

•  See Section 5.10 for details

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
17 1
7

Performance on Benchmarks!

PFC = Parallel Fortran Converter tool developed at Rice by Allen & Kennedy

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
18 1
8

Test 171: One example that PFC was
unable to vectorize!

DO I = 1, N!
! !A(I*N) = A(I*N) + B(I)!

ENDDO!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
19 1
9

Coarse-Grain Parallelism!

Chapter 6 of Allen and Kennedy

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
20 2
0

Introduction!

•  Previously, our transformations targeted
vector and superscalar architectures.
•  In Chapter 6, we worry about
transformations for symmetric
multiprocessor machines.
•  The difference between these
transformations tends to be one of
granularity.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
21 2
1

p1

Memory

Bus

p2 p3 p4

Review!
•  SMP machines have multiple

processors all accessing a
central memory.

•  The processors are
unrelated, and can run
separate processes.

•  Starting processes and
synchonrization between
proccesses is expensive.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
22 2
2

Synchronization!
•  A basic synchronization element is the barrier at the end of a

parallel loop.
•  A barrier in a program forces all processes to reach a certain

point before execution continues.
•  Bus contention can cause slowdowns.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
23

Techniques for parallelizing a single
loop!

•  Single loop methods
— Privatization
— Loop distribution
— Loop fusion
— Alignment
— Code replication

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
24 2
4

 DO I = 1,N!

S1 T = A(I)!

S2 A(I) = B(I)!

S3 B(I) = T!

 ENDDO!

 PARALLEL DO I = 1,N!

 PRIVATE t!

S1 t = A(I)!

S2 A(I) = B(I)!

S3 B(I) = t!

 ENDDO !

Single Loops!
•  The analog of scalar expansion is privatization.
•  Temporaries can be given separate namespaces for each

iteration.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
25 2
5

Definition: A scalar variable x in a loop L is said to be
privatizable if every path from the loop entry to a use
of x inside the loop passes through a definition of x.

Privatizability can be stated as a data-flow problem:

We can also do this by declaring a variable x private if its
SSA graph doesn’t contain a phi function at the entry. 	

up(x) = use(x)∪ (!def (x)∩ up(y))
y∈succ(x)
U

private(L) =!up(entry)∩ (def (y))
y∈L
U

Privatization!

25

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
26 2
6

Example of Privatizable Scalar Variable!
•  “Method of, system for, and

computer program product
for efficient identification of
private variables in program
loops by an optimizing
compiler”, US Patent
5,790,859, issued Aug 1998.

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
27

REMINDER:  
Homework #4 (Written Assignment)!

1. Solve exercise 5.6 in book
— Your solution should be legal for all values of K (note that the value of K

is invariant in loop I)

•  Due in class on Thursday, Oct 17th

•  Honor Code Policy: All submitted homeworks are expected to be the
result of your individual effort. You are free to discuss course
material and approaches to problems with your other classmates,
the teaching assistants and the professor, but you should never
misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper
attribution.

