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Compiler Improvement of Register 
Usage

Chapter 8 (contd)
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Simplified View of Scalar Replacement 
Algorithm (Section 8.3.7)

Simplifying assumptions:
• No control flow in loop body
• Other loop transformations (interchange, alignment, fusion, unroll-and-

jam, index set splitting) have been performed as a pre-pass and can 
be ignored here

• Ignore register pressure issues at this stage

High-level Algorithm:
1. Prune dependence graph for scalar replacement
2. Apply “typed fusion” to partition dependence graph into “name 

partitions” (each partition is a candidate for sharing a scalar variable)
3. For each selected partition

A) If non-cyclic, replace using set of temporaries
B) If cyclic replace with single temporary
C) Insert loads and stores for each inconsistent dependence
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DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

Scalar Replacement: Case A
t0A = A(0); t1A0 = A(1); 

tB1 = B(0); tB2 = B(1)

DO I = 1, N

! ! t1A1 = t0A + tB1

! ! tB3 = B(I+1)

! ! t0A = t1A0 + tB3 + tB2

! ! A(I) = t0A

! ! t1A0 = t1A1

! ! tB1 = tB2

! ! tB2 = tB3

ENDDO

A(N+1) = t1A1
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Scalar Replacement: Case B
! ! DO I = 1, N

! !

! ! ! A(J) = B(I) + C(I,J)

! !

! ! ! C(I,J) = A(J) + D(I) 

! ! ENDDO

• replace with single temporary...

  DO I = 1, N

! ! ! tA = B(I) + C(I,J)

! ! ! C(I,J) = tA + D(I) 

! ! ENDDO

! ! A(J) = tA
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Pruning the Dependence Graph for 
Scalar Replacement (Section 8.3.1)

Goal:
• Only retain dependence edges that represent a possible elimination of a 

load and/or a store operation via scalar replacement
NOTE: pruned dependence graph is reference-level (not statement-level)
Pruning Algorithm:
Phase 0: Start with dependence graph containing only flow and input 

dependences (remove all anti and output dependences)
Phase 1: Eliminate all killed dependences (dependences with a killing store 

between source and destination)
Phase 2: Identify generators.  A generator is a reference with no 

incoming input/flow dependence and at least one outgoing input/flow 
dependence.

Phase 3: Find name partitions and eliminate input dependences within 
partitions.  Start with each generator, and mark each reference 
reachable from the generator in pruned dependence graph as part of 
that partition.  (Typed fusion algorithm can be used for this phase).
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Phase 1: Eliminate Killed Dependences
•  When killed dependence is a flow dependence

   S1: A(I+1) = ... 
   S2: A(I)  = ... 
   S3: ...  = A(I)

—Store in S2 is a killing store. Flow dependence from S1 to S3 is 
pruned

•  When killed dependence is an input dependence
   S1: ... = A(I+1) 
   S2: A(I)  = ... 

   S3: ...  = A(I-1)

—Store in S2 is a killing store. Input dependence from S1 to S3 is 
pruned
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• Generators are identified below in red

DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

       A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Any assignment reference with at least one flow dependence 
emanating from it to another statement in the loop

• Any use reference with at least one input dependence emanating 
from it and no input or flow dependence into it 

Phase 2: Identify Generators
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Phase 3: Find Name Partitions
• Find name partitions and eliminate input dependences

—Use Typed Fusion
– References as vertices
– Pruned (flow/input) dependence edges are fusible edges
– Output and anti- dependences are bad edges
– Name of array as type

• Clean-up: Eliminate input dependences between two elements of 
same name partition unless source is a generator
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Example of Phases 0, 1, 2
DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Dashed edges are pruned

• Each reference has at most one 
predecessor in the pruned graph

• Generator = source of edge in 
pruned graph

 DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

! ENDDO

• Dependence pattern before 
pruning (including input 
dependences)

• Not all edges suggest memory 
access savings

11



DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Apply scalar replacement after 
pruning the dependence graph

• Needs special-case handling of 
loop-carried dependences (to be 
discussed later)

Scalar Replacement for Previous 
Example

t0A = A(0); t1A0 = A(1); 

tB1 = B(0); tB2 = B(1);

DO I = 1, N

! ! t1A1 = t0A + tB1

! ! tB3 = B(I+1)

! ! t0A = t1A0 + tB2 + tB3

! ! A(I) = t0A

! ! t1A0 = t1A1

! ! tB1 = tB2

! ! tB2 = tB3

ENDDO

A(N+1) = t1A1

• Only one load and one store per 
iteration
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Complication 1 (pg 390): Handling 
Dependence Cycle in Loop

— Reference is in a dependence cycle in the loop, and can be 
replaced by a single scalar variable

! ! DO I = 1, N

! !

! ! ! A(J) = B(I) + C(I,J)

! !

! ! ! C(I,J) = A(J) + D(I) 

! ! ENDDO

• Assign single scalar to the reference in the cycle

• Replace A(J) by a scalar tA and insert A(J)=tA before or after 
the loop depending on upward/downward exposed occurrence
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Complication 2: Inconsistent Dependences 
w/ non-constant threshold (pp. 390-391)

• Special cases: Inconsistent 
dependences

! DO I = 1, N

! ! A(I) = A(I-1) + B(I)

! ! A(J) = A(J) + A(I) 

! ENDDO

• Store to A(J) kills A(I)

• Only one scalar replacement 
possible

! DO I = 1, N

! ! tAI = A(I-1) + B(I)

! ! A(I) = tAI

! ! A(J) = A(J) + tAI 

! ENDDO

• This code can be improved 
substantially by index set 
splitting
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Conclusion
• We have learned two memory hierarchy transformations:

—scalar replacement 
—unroll-and-jam

• They reduce the number of memory accesses by maximum use 
of processor registers
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Managing Cache

Allen and Kennedy, Chapter 9

16



Introduction
• Register

—One word per register (typically, but there may be exceptions e.g., 
SIMD registers)

—Temporal reuse
—Direct store
—Eviction (spills) managed by software

• Cache
—Multiple words in a cache line, multiple lines in an associative set, 

multiple sets in a cache
—Temporal and Spatial reuse
—Load before store
—Eviction managed by hardware (software can also help)
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Spatial Reuse
• Permits high reuse when accessing closely located data

• DO I = 1, M

      DO J = 1, N

         A(I, J) = A(I, J) + B(I, J)

      ENDDO

   ENDDO

   No reuse/locality for Fortran’s column-major layout
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Spatial Reuse
• DO J = 1, N

      DO I = 1, M

         A(I, J) = A(I, J) + B(I, J)

      ENDDO

   ENDDO

   Iterates over columns instead
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Temporal Reuse
• Reuse limited by cache size, LRU replacement strategy

• DO I = 1, M

      DO J = 1, N

         A(I) = A(I) + B(J)

      ENDDO

   ENDDO
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Temporal Reuse

• Strip mining + Interchange (or Tiling) can improve 
temporal reuse when tile size S is chosen so that 
inner loops can fit in cache

• DO J = 1, N, S

      DO I = 1, M

         DO jj = J, MIN(N, J+S-1)

            A(I) = A(I) + B(jj)

         ENDDO

      ENDDO

   ENDDO
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