
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 23 22 November, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

2

Interprocedural Analysis and Optimization

Chapter 11

3

Introduction
• Interprocedural Analysis

—Gathering information about the whole program instead of a single
procedure

• Interprocedural Optimization
—Program transformation modifying more than one procedure using

interprocedural analysis

4

Overview: Interprocedural Analysis
• Examples of Interprocedural problems

• Classification of Interprocedural problems

• Solve two Interprocedural problems
—Side-effect Analysis
—Alias Analysis

5

Some Interprocedural Analysis
Problems

• Modification and Reference Side-effect

 COMMON X(N),Y(N) ! Static arrays

 ...

 DO I = 1, N

 S0: CALL P

 S1: X(I) = X(I) + Y(I)

 ENDDO

• Can parallelize I loop if P
1. neither modifies nor uses X
2. does not modify Y

6

x ∉REF(S0)∧ x ∉MOD(S0) ∧ y ∉REF(S0)

Modification and Reference Side Effect
• MOD(s): set of variables that may be modified as a side

effect of call at s

• REF(s): set of variables that may be referenced as a side
effect of call at s

 DO I = 1, N

 S0: CALL P

 S1: X(I) = X(I) + Y(I)

 ENDDO

• Can vectorize S1 if
—TODO: replace REF by MOD for y term above

7

Alias Analysis
 COMMON Y ! static variable

 SUBROUTINE S(A,X,N)

 DO I = 1, N

 S0: X = X + Y*A(I)

 ENDDO

 END

• Could have kept X and Y in different registers and stored in X
outside the loop

• What happens when there is a call, CALL S(A,Y,N)?
—Then Y is aliased to X on entry to S
—Can’t delay update to X in the loop any more since we don’t know

for sure if X and Y are aliased

• ALIAS(p,x): set of variables that may refer to the same
location as formal parameter x on entry to procedure p8

Call Graph Construction
• Call Graph G=(N,E)

—N: one vertex for each procedure
—E: one edge for each possible call

– Edge (p,q) is in E if procedure p may call procedure q

• Looks easy

• Construction difficult in presence of procedure parameters

• Also for virtual method calls in object-oriented languages

9

Call Graph Construction:
Example with procedure parameter

 SUBROUTINE S(X,P)

 S0: CALL P(X)

 RETURN

 END

• P is a procedure parameter to S

• What values can P have on entry to S?

• CALL(s): set of all procedures that may be invoked at s

• Resembles the alias analysis problem

10

Live and Use Analysis
 DO I = 1, N

 T = X(I)*C

 A(I) = T + B(I)

 C(I) = T + D(I)

 ENDDO

• This loop can be parallelized by
making T a local variable in the
loop

 PARALLEL DO I = 1, N

 LOCAL t

 t = X(I)*C

 A(I) = t + B(I)

 C(I) = t + D(I)

 IF(I.EQ.N) T = t

 ENDDO

• Copy of local version of T to the
global version of T is required to
ensure correctness

• What if T was not live outside
the loop?

11

Live and Use Analysis
• Solve Live analysis using Use Analysis

• USE(s): set of variables having an upward exposed use in
procedure p called at s

• If a call site, s is in a single basic block(b), x is live if either
—x in USE(s) or
—P doesn’t assign a new value to x and x is live in some control flow

successor of b

12

Kill Analysis
 DO I = 1, N

 S0: CALL INIT(T,I)

 T = T + B(I)

 A(I) = A(I) + T

 ENDDO

• To parallelize the loop:
—INIT must not create a recurrence with respect to the loop
—T must not be upward exposed (otherwise it cannot be privatized)

13

Kill Analysis
 DO I = 1, N

S0: CALL INIT(T,I)

 T = T + B(I)

 A(I) = A(I) + T

 ENDDO

• T has to be assigned before
being used on every path
through INIT

 SUBROUTINE INIT(T,I)

 REAL T

 INTEGER I

 COMMON X(100)

 T = X(I)

 END

• If INIT is of this form we can
see that T can be privatized

14

• KILL(s): set of variables assigned on every path through
procedure p called at s and through procedures invoked in p

• T in the previous example can be privatized under the following
condition

• Also we can express LIVE(s) as following

T ∈(KILL(S0)∩¬USE(S0))

LIVE(s) =USE(s)∪ (¬KILL(s)∩ LIVE(b))

b∈succ(s)
U

Kill Analysis

15

Constant Propagation
 SUBROUTINE S(A,B,N,IS,I1)

 REAL A(*), B(*)

 DO I = 0, N-1

 S0: A(IS*I+I1) = A(IS*I+I1) + B(I+1)

 ENDDO

 END

• If IS=0 the loop around S0 is a reduction

• If IS!=0 the loop can be vectorized

• CONST(p): set of variables with known constant values on every
invocation of p

• Knowledge of CONST(p) useful for interprocedural constant
propagation

16

Interprocedural Problem Classification
• May and Must problems

—MOD, REF and USE are ‘May’ problems
—KILL is a ‘Must’ problem

• Flow sensitive and flow insensitive problems
—Flow sensitive: control flow info included in analysis
—Flow insensitive: control flow info is (conservatively) ignored

• May and Must classification can apply to call graph edges as
well

17

Flow Insensitive Side-effect Analysis

• Assumptions
—No procedure nesting i.e., no inner functions
—All parameters passed by reference
—Size of the parameter list bounded by a constant,

• We will formulate and solve MOD(s) problem

18

• DMOD(s): set of variables which are directly modified as side-
effect of call at s (ignoring aliases)

• GMOD(p): set of global variables and formal parameters w of p
that are modified, either directly or indirectly as a result of
invocation of p
—Global variables are modeled as special “parameters” in this

formulation

MOD(s) = DMOD(s)∪ ALIAS(p, x)

x∈DMOD(s)
U

DMOD(s) ={v | s⇒ p, v s⎯ → ⎯ w,w ∈GMOD(p)}

Solving MOD

19

Example: DMOD and GMOD
 S0: CALL P(A,B,C)

 …

 SUBROUTINE P(X,Y,Z)

 INTEGER X,Y,Z

 X = X*Z

 Y = Y*Z

 END

• GMOD(P)={X,Y}

• DMOD(S0)={A,B}

20

Solving GMOD
• GMOD(p) contains two types of variables

—Variables explicitly modified in body of P: This constitutes the set
IMOD(p)

—Variables modified as a side-effect of some procedure invoked in p
– Global variables are viewed as parameters to a called procedure

—The above formulation is impractical for recursive programs

GMOD(p) = IMOD(p)∪ {z | z s⎯ → ⎯

s= (p,q)
U w,w ∈GMOD(q)}

21

Solving GMOD
• The previous iterative method may take a long time to converge

—Problem with recursive calls

 SUBROUTINE P(F0,F1,F2,…,Fn)

 INTEGER X,F0,F1,F2,..,Fn

 …

 S0: F0 = <some expr>

 …

 S1: CALL P(F1,F2,…,Fn,X)

 …

 END

22

Solving GMOD
• Decompose GMOD(p) differently to get an efficient solution in

the presence of recursion

• Key: Treat side-effects to global variables and reference
formal parameters separately

• LOCAL refers to local variables in q

GMOD(p) = IMOD+(p)∪

s =(p,q)
U GMOD(q)∩ ¬LOCAL

• if
— or
— and x is a formal parameter of p

• Formally defined

• RMOD(p): set of formal parameters in p that may be modified
in p, either directly or by assignment to a reference formal
parameter of q as a side effect of a call of q in p

x ∈ IMOD+(p)
x ∈ IMOD(p)
x s⎯ → ⎯ z, z∈GMOD(q), s = (p, q)

IMOD+(p) = IMOD(p)∪ {z | z s⎯ → ⎯

s =(p,q)
U w, w∈RMOD(q)}

Solving for IMOD+

24

Solving for RMOD
• RMOD(p): set of formal parameters in p that may be modified

in p, either directly or by assignment to a reference formal
parameter of q as a side effect of a call of q in p

• Binding Graph GB=(NB,EB)
—One vertex for each formal parameter of each procedure
—Directed edge from formal parameter, f1 of p to formal

parameter, f2 of q if there exists a call site s=(p,q) in p such that
f1 is bound to f2

• Use a marking algorithm to compute RMOD(p) (Figure 11.2)
—Mark each vertex as false initially
—Mark formals of P in IMOD(p) as true
—Perform a closure operation (propagate bits)

– Mark f1 as true if GB has an edge from f1 to f2 and f2 is
marked true

– Use worklist algorithm (or reverse DFS, if you prefer)25

X Y Z

 P Q

• IMOD(A)={X,Y}

• IMOD(B)={I}

(0) (0) (0)

(0)(0)

Solving for RMOD
SUBROUTINE A(X,Y,Z)

 INTEGER X,Y,Z

 X = Y + Z

 Y = Z + 1

END

SUBROUTINE B(P,Q)

 INTEGER P,Q,I

 I = 2

 CALL A(P,Q,I)

 CALL A(Q,P,I)

END

26

X Y Z

 P Q

• IMOD(A)={X,Y}

• IMOD(B)={I}

• Worklist={X,Y}

(1) (1) (0)

(0)(0)

Solving for RMOD
SUBROUTINE A(X,Y,Z)

 INTEGER X,Y,Z

 X = Y + Z

 Y = Z + 1

END

SUBROUTINE B(P,Q)

 INTEGER P,Q,I

 I = 2

 CALL A(P,Q,I)

 CALL A(Q,P,I)

END

27

X Y Z

 P Q

• RMOD(A)={X,Y}

• RMOD(B)={P,Q}

• Complexity:

(1) (1) (0)

(1)(1)

Solving for RMOD
SUBROUTINE A(X,Y,Z)

 INTEGER X,Y,Z

 X = Y + Z

 Y = Z + 1

END

SUBROUTINE B(P,Q)

 INTEGER P,Q,I

 I = 2

 CALL A(P,Q,I)

 CALL A(Q,P,I)

END

O(NB + EB)

NB ≤ µN EB ≤ µE

O(N + E)

28

X Y Z

 P Q

• IMOD(A)={X,Y}

• IMOD(B)={I}

(0) (0) (0)

(0)(0)

Solving for RMOD
SUBROUTINE A(X,Y,Z)

 INTEGER X,Y,Z

 X = Y + Z

 Y = Z + 1

END

SUBROUTINE B(P,Q)

 INTEGER P,Q,I

 I = 2

 CALL A(P,Q,I)

 CALL A(Q,P,I)

END

29

X Y Z

 P Q

• IMOD(A)={X,Y}

• IMOD(B)={I}

• Worklist={X,Y}

(1) (1) (0)

(0)(0)

Solving for RMOD
SUBROUTINE A(X,Y,Z)

 INTEGER X,Y,Z

 X = Y + Z

 Y = Z + 1

END

SUBROUTINE B(P,Q)

 INTEGER P,Q,I

 I = 2

 CALL A(P,Q,I)

 CALL A(Q,P,I)

END

30

X Y Z

 P Q

• RMOD(A)={X,Y}

• RMOD(B)={P,Q}

• Complexity:

(1) (1) (0)

(1)(1)

Solving for RMOD
SUBROUTINE A(X,Y,Z)

 INTEGER X,Y,Z

 X = Y + Z

 Y = Z + 1

END

SUBROUTINE B(P,Q)

 INTEGER P,Q,I

 I = 2

 CALL A(P,Q,I)

 CALL A(Q,P,I)

END

O(NB + EB)

NB ≤ µN EB ≤ µE

O(N + E)

31

Solving for IMOD+

• After gathering RMOD(p) for all procedures, update RMOD(p)
to IMOD+(p) using this equation

• This can be done in O(NV+E) time

IMOD+(p) = IMOD(p)∪ {z | z s⎯ → ⎯

s =(p,q)
U w, w∈RMOD(q)}

32

Solving for GMOD
• After gathering IMOD+(p) for all procedures, calculate GMOD

(p) according to the following equation

• This can be solved using a DFS algorithm based on Tarjan’s SCR
algorithm on the Call Graph

GMOD(p) = IMOD+(p)∪

s =(p,q)
U GMOD(q)∩ ¬LOCAL

33

Solving for GMOD

rq

p

s

rq

p

s 1

2 3

4

Initialize GMOD(p) to IMOD+(p) on discovery

Update GMOD(p) computation while backing up

34

Solving for GMOD

rq

p

s

rq

p

s 1

3 2

4

Initialize GMOD(p) to IMOD+(p) on discovery

Update GMOD(p) computation while backing up

For each node u in a SCR update GMOD(u) in a cycle

O((N+E)V) Algorithm
35

Overview: Interprocedural Analysis
• Examples of Interprocedural problems

• Classification of Interprocedural problems

• Solve two Interprocedural problems
—Side-effect Analysis
—Alias Analysis

36

