Lambda the Ultimate

Corky Cartwright
Vivek Sarkar
Department of Computer Science
Rice University
Function \textit{filter2}: variant of \textit{filter1} function from last lecture

\begin{verbatim}
;; filter2 : test lon -> lon
;; to construct a list of those numbers n
;; in alon such that (test n) is true
(define (filter2 test alon)
 (cond [(empty? alon) empty]
 [else
 (cond [(test (first alon))
 (cons (first alon)
 (filter2 test (rest alon)))]
 [else (filter2 test (rest alon) t)]))
)
\end{verbatim}

Function \textit{filter2} takes function \textit{test} as a “data” input
How can we pass different test functions as data for `filter2`?

1. By introducing a top-level definition

   ```scheme
   (define (Positive? n) (> n 0))
   (check-expect (filter2 Positive? '(-1 2 0 3)) '(2 3))
   ```

2. By using a local expression to avoid cluttering top-level definitions --- how?
How can we pass different test functions as data for \texttt{filter2}?

2. By using a local expression to avoid cluttering top-level definitions ...

\begin{verbatim}
(check-expect
 (filter2
 (local ((define (Positive? n) (> n 0)))
 Positive?)
 '(-1 2 0 3))
 '(2 3))

... at the expense of cluttered local expressions.
\end{verbatim}
Motivation for λ-notation

- It is sometimes convenient to build new functions in the middle of a computation without having to name them
 - Often, these functions are used only once
 - There may even be an unbounded number of such functions created at run-time
- Examples: arguments to functions like
 - map,
 - filter,
 - fold,
 - and many more "higher-order" functions
\(\lambda\)-notation: Basic Idea

- \(\lambda\)-notation was invented by mathematicians. For example, given \(f(x) = x^2 + 1\) what is \(f\)? \(f\) is the function that maps \(x\) to \(x^2 + 1\) which we might write as \(x \rightarrow x^2 + 1\). The latter avoids naming the function.

- The notation \(\lambda x . x^2 + 1\) evolved instead of \(x \rightarrow x^2 + 1\)

- In Scheme, we write \((\text{lambda} (x) (+ (* x x) 1))\) instead of \(\lambda x . x^2 + 1\)
How can we pass different test functions as data for \texttt{filter2}?

3) By using lambda expressions ...

\begin{verbatim}
(check-expect
 (filter2
 (lambda (n) (> n 0))
 '(-1 2 0 3))
 ' (2 3))
\end{verbatim}

... note that lambda expressions are anonymous!
Lambda Expression

- A lambda expression consists of
 - The keyword lambda
 - A list of variable names denoting arguments
 - An expression denoting a function of the arguments

- \((\text{lambda} \ (\ var_1 \ var_2 \ \ldots \ var_n \) \ \exp)\)
 - \(\exp\) is an arbitrary expression
 - \(\var_i\) is a variable (argument) that is only available for use within \(\exp\)

- A lambda-expression is just a value with a type that happens to be a function
Function definitions revisited

• A function definition basically defines a function value for a given name, just like any other variable definition defines a value for a name

• \(\text{define (f x) (+ (* x x) 1)}\) is just short hand for \(\text{define f (lambda (x) (+ (* x x) 1))}\)

• Question: when is the divide-by-zero error encountered in the following top-level definitions?
 • \(\text{define x (/ 1 0)}\)
 • \(\text{define f (lambda (n) (/ n 0))}\)
Why λ?

The name was used by its inventor
Alonzo Church, logician, 1903-1995.
Princeton, NJ
Introduced lambda in 1930’s to formalize math

Church is Corky’s academic great-grandfather
Alonzo Church -> Hartley Rogers ->
David Luckham -> Corky Cartwright
Scope for a Lambda Abstraction

• Argument scope:
 \((\text{lambda } \,(x_1 \ldots x_n) \, \text{body})\) introduces the variables \(x_1 \ldots x_n\) which have \text{body} as their scope (except for holes)

• Example:
 \((\text{lambda } \,(x) \, (+ (* x x) 1)))\)

• Scope for variable introduced by \text{define}. At the top-level,
 \((\text{define } f \, \text{rhs})\) introduces the variable \(f\) which is visible everywhere (except in holes introduced by local definitions in \(f\)).

• Inside
 \((\text{local } [(\text{define } f_1 \, \text{rhs}_1) \ldots (\text{define } f_n \, \text{rhs}_n))] \, \text{body})\)
 the variables \(f_1 \ldots f_n\) have \text{body} as their scope.

• Recursion comes from \text{define} not from \text{lambda}!
Example

Now we can write the following program

\[
\begin{align*}
&\text{(define } l \ ' (1 \ 2 \ 3 \ 4 \ 5)) \\
&\text{(define } a \\
&\quad \text{(local } ((\text{define } \text{square } x) \\
&\quad \quad (* \ x \ x))) \\
&\quad \text{(map } \text{square } l)))
\end{align*}
\]

concisely as

\[
\begin{align*}
&\text{(define } l \ ' (1 \ 2 \ 3 \ 4 \ 5)) \\
&\text{(define } a \text{ (map } (\text{lambda } (x) (* \ x \ x)) \ l))
\end{align*}
\]
lambda VS. local

• Recall that:

 \[(\text{lambda (x1 \ldots xn) exp})\]

 is equivalent to

 \[(\text{local ((define (f x1 \ldots xn) exp)) f})\]

• Is lambda as general as local? No!
 How do I introduce a recursive function definition using lambda alone?

 • It can be done but it involves deep, subtle, and messy use of \(\lambda\)-notation (topic in Comp 311).

 • Direct formulations of recursion rely on the name of the defined function, which lambda lacks.
Evaluation of λ-expressions

How do we evaluate a λ-expression

$$(\text{lambda } (x_1 \ldots x_n) \text{ body})$$

It's a value --- no further reduction can be performed!

What about λ-applications?

β-reduction rule

$$(\text{((lambda } (x_1 \ldots x_n) \text{ body} \text{) } v_1 \ldots v_n) \Rightarrow \text{ body}[x_1:=v_1 \ldots x_n:=v_n]}$$

where v_1, \ldots, v_n are values and $\text{body}[x_1:=v_1 \ldots x_n:=v_n]$ means body with x_1 replaced by v_1, \ldots, x_n replaced by v_n.

Examples:

$$((\text{lambda } (x) \ (* \ x \ 5)) \ 4) \Rightarrow (* \ 4 \ 5) \Rightarrow 20$$

$$((\text{lambda } (x) \ (x \ x)) \ (\text{lambda } (x) \ (x \ x)))$$

$$\Rightarrow ((\text{lambda } (x) \ (x \ x)) \ (\text{lambda } (x) \ (x \ x)))$$

$$\Rightarrow \ldots \ ???$$
More Examples

\[((\lambda (x \ y \ z) \ (+ \ x \ y \ z)) \ 1 \ 2 \ 3) \]
\[\Rightarrow (+ \ 1 \ 2 \ 3) \]

\[(((\lambda (x) \ (\lambda (y) \ (+ \ x \ y))) \ (* \ 2 \ 3)) \ 4) \]
\[\Rightarrow (((\lambda (x) \ (\lambda (y) \ (+ \ x \ y))) \ 6) \ 4) \]
\[\Rightarrow ((\lambda (y) \ (+ \ 6 \ y)) \ 4) \]
\[\Rightarrow (+ \ 6 \ 4) \]
\[\Rightarrow 10 \]
Fine Points of Substitution

- Only the free occurrences of a variable are replaced. A variable occurrence v in an expression E is free iff it does not refer to a variable bound in E. A non-free (bound) variable occurrence v in expression E must be embedded in a local scope (defined by a lambda or a local) within E.

- Examples:
 - Neither occurrence of x is free in $(\text{lambda} \ (x) \ x)$
 - Neither occurrence of x is free in $(\text{local} \ [(\text{define} \ x \ 12)] \ x)$
 - x is free in $(+ \ y \ x)$
 - x is free in $(\text{lambda} \ (y) \ (+ \ y \ x))$
 - Only the first occurrence of x is free in
 $((+ \ x \ (\text{local} \ [(\text{define} \ x \ 12)] \ (* \ x \ 13)))$
Example: Lambda expression as a return value

```
(define (gen-add-by n)
  (lambda (x) (+ x n))
)
```

What do the following expressions evaluate to?

- (gen-add-by 1)
- ((gen-add-by 1) 1)
- ((gen-add-by 2) ((gen-add-by 1) 1))
Nesting λ

$$(\lambda \mathit{x} \ (\lambda \mathit{y} \ (+ \ (* \ \mathit{x} \ \mathit{y}) \ (* \ 4 \ 5)))$$

$$=> \ (\lambda \mathit{x} \ (\lambda \mathit{y} \ (+ \ (* \ \mathit{x} \ \mathit{y}) \ (* \ 4 \ 5)))$$

$$((\lambda \mathit{x} \ (\lambda \mathit{y} \ (+ \ \mathit{x} \ 1)) \ 5)$$

$$=> \ (\lambda \mathit{y} \ (+ \ 5 \ 1))$$

$$((\lambda \mathit{x} \ (\lambda \mathit{x} \ (+ \ \mathit{x} \ 1)) \ 5)$$

$$=> \ (\lambda \mathit{x} \ (+ \ \mathit{x} \ 1))$$

;; NOTE: the red y is a free variable

$$((\lambda \mathit{x} \ (\lambda \mathit{y} \ (\mathit{y} \ \mathit{x}))) \ (\lambda \mathit{z} \ (+ \ \mathit{y} \ \mathit{z})))$$

$$=> \ (\lambda \mathit{y} \ (\mathit{y} \ (\lambda \mathit{z} \ (+ \ \mathit{y} \ \mathit{z}))))$$

which is WRONG (but this case can’t arise in legal Scheme evaluations)
Safe Substitution

To salvage the correctness of β-reduction in the general case, we must stipulate that the rule uses safe substitution, where safe substitution renames local variables in the code body that is being modified by the substitution to avoid capturing free variables in the argument expression that is being substituted.

((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))
=> ((lambda (x) (lambda (f) (f x))) (lambda (z) (+ y z)))
=> (lambda (f) (f (lambda (z) (+ y z))))

We will not hold you responsible on exams for understanding either safe substitution or the subtleties of β-reduction when the argument expressions contain free variables.
When Should I Use a Lambda?

• It makes sense to use a lambda instead of define when
 • the function is not recursive;
 • the function is needed only once; and
 • the function is either
 • being passed to another function, or
 • being returned as the final result (contract returns “->”)
• Note: It is hard to read code when lambda is used at the head of an application
 • ((lambda (x) (* x x)) (+ 13 14))
• We can rewrite this as:
 • (local ((define x (+ 13 14))) (* x x))
Lambda Is Becoming Pervasive in PL

By popular demand, a few features commonly found in functional programming languages and Lisp have been added to Python [...]"

Guido van Rossum,
4.7.4 Lambda Forms, Python Tutorial
Examples of lambda in Python

identityFunc = lambda x: x
print identityFunc(2) # prints 2

sumFunc = lambda a, b: a + b
print sumFunc(2, 3) # prints 5

squareFunc = lambda a: a * a
cubeFunc = lambda a: a * a * a
rootFunc = lambda a: a ** 0.5

compose = lambda f, g: lambda x: f(g(x))
print compose(squareFunc, rootFunc)(4.0) # prints 4.0
print compose(rootFunc, cubeFunc)(4.0) # prints 8.0
Examples of lambda in F#
(anonymous functions)

(fun n -> n * 2) // anonymous function (a lambda expr)

List.map (fun n -> n * 2) [1;2;3] // returns [2;4;6]

“Lambda expressions are especially useful when you want to perform
operations on a list or other collection and want to avoid the extra work of
defining a function. Many F# library functions take function values as
arguments, and it can be especially convenient to use a lambda
expression in those cases.”

Use of Functions as Data in Google’s Map-Reduce Framework

- Application of functional programming concepts to data-center-scale distributed systems
- Filter = computation specified by map function
- Aggregator = computation specified by reduce (fold) function

Reference:

Source for figure: Figure 10.6 from “Principles of Parallel Programming” by C. Lin & L. Snyder