
1

Lambda the Ultimate

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Motivation for λ-notation
• Often, functions are used only once
• Examples: arguments to functions like

• map,
• filter,
• fold, and many more "higher-order" functions

• Sometimes we want to build new functions in the
middle of a computation.

• Local suffices but it is notationally clumsy for this
purpose.

• λ provides simpler, more concise notation

COMP 211, Spring 2009 3

Basic Idea
• λ-notation was invented by mathematicians. For example,

given
 f (x) = x2 + 1
what is f? f is the function that maps x to x2 + 1 which we
might write as
 x → x2 + 1
The latter avoids naming the function. The notation
λ x . x2 + 1 evolved instead of x → x2 + 1

• In Scheme, we write (lambda (x) (+ (* x x) 1)))
instead of λ x . x2 + 1.

• (define (f x) (+ (* x x) 1)) abbreviates
(define f (lambda (x) (+ (* x x) 1)))

COMP 211, Spring 2009 4

Why λ?
• The name was used by its inventor

• Alonzo Church, logician, 1903-1995.
• Princeton, NJ
• Introduced lambda in 1930ʼs to

formalize math

Church is my academic great-grandfather
Alonzo Church -> Hartley Rogers ->

David Luckham -> Corky Cartwright

COMP 211, Spring 2009 5

Scope for a Lambda Abstraction
• Argument scope:

(lambda (x1 ... xn) body) introduces the variables x1 ...
Xn which have body as their scope (except for holes)

• Example:
 (lambda (x) (+ (* x x) 1)))

• Scope for variable introduced by define. At the top-level,
 (define f rhs)
introduces the variable f which is visible everywhere
(except inside holes introduced by local definitions of f).
Inside
 (local [(define f1 rhs1) ... (define fn rhsn)) body)
the variables f1 ... fn have body as their scope.

• Recursion comes from define not lambda!

COMP 211, Spring 2009 6

Many PL researchers are crazy
about λ!

Prof.
Phil Wadler
at
CWI,
Amsterdam,
Holland

COMP 211, Spring 2009 7

Example
Now we can write the following program concisely
(define l '(1 2 3 4 5))
(define a
 (local ((define (square x)
 (* x x)))
 (map square l)))

as

(define l '(1 2 3 4 5))
(define a (map (lambda (x) (* x x)) l))

COMP 211, Spring 2009 8

Careful Definition of Syntax
• Official specification of what expressions that use

lambda can look like:
• exp = ... | (lambda (var*) exp)

• Interesting points
• Can have multiple arguments
• Can have no arguments

• Application of a function with no arguments
• (define blowup (lambda () (/ 1 0)))
(blowup)

COMP 211, Spring 2009 9

Functions with Zero Arguments?
• We donʼt see them in math

• A function with zero arguments would always produce
the same result (so, itʼs just a constant)

• In computing, we see them for several reasons:
• Encapsulate potential error or divergence.
• Once we introduce side-effects (destructive

modification of data), procedures (the analogs of
functions in the world of side effects) of no arguments
are common.

COMP 211, Spring 2009 10

Careful Analysis of Analogy
• Recall that:
(lambda (x1 ... xn) exp)
abbreviates
(local ((define (f x1 ... xn) exp))
 f)

• Is lambda as general as local? No!
How do I introduce a recursive function definition
using lambda?

• It can be done but it involves very deep and subtle
use of λ-notation, which is covered in Comp 311.

• You need a name to recur, which lambda lacks.

COMP 211, Spring 2009 11

Evaluation of λ-expressions
How do we evaluate a λ-expression
 (lambda (x1 ... xn) body)

It's a value!
What about λ-applications?
 ((lambda (x1 ... xn) body) v1 ... vn)
=> body[x1←v1 ... xn←vn] (called β-reduction)

Examples:
 ((lambda (x) (* x 5)) 4) => (* 4 5) => 20

 ((lambda (x) (x x)) (lambda (x) (x x)))
=> ((lambda (x) (x x)) (lambda (x) (x x)))
=> ... (cool?)

COMP 211, Spring 2009 12

More Examples
 ((lambda (x y z) (+ x y z)) 1 2 3)

=> (+ 1 2 3)

 (((lambda (x) (lambda (y) (+ x y))) (* 2 3)) 4)

=> (((lambda (x) (lambda (y) (+ x y))) 6) 4)

=> ((lambda (y) (+ 6 y)) 4)

=> (+ 6 4)

=> 10

COMP 211, Spring 2009 13

Nesting λ
 (lambda (x) (lambda (y) (+ (* x y) (* 4 5)))
=> (lambda (x) (lambda (y) (+ (* x y) (* 4 5)))

 ((lambda (x) (lambda (y) (+ x 1)) 5)
=> (lambda (y) (+ 5 1))

 ((lambda (x) (lambda (x) (+ x 1)) 5)
=> (lambda (x) (+ x 1))

 ((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))
=> (lambda (y) (y (lambda (z) (+ y z))))) WRONG!

COMP 211, Spring 2009 14

Safe Substitution
• Must rename local variables in the code body that

is being modified by the substitution to avoid
capturing free variables in the argument
expression that is being substituted.

 ((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))
 => ((lambda (x) (lambda (f) (f x))) (lambda (z) (+ y z)))
 => (lambda (f) (f (lambda (z) (+ y z))))

COMP 211, Spring 2009 15

When Should I Use a Lambda?
• It makes sense to use a lambda instead define when

• the function is not recursive;
• the function is needed only once; and
• the function is either

• being passed to another function, or
• being returned as the final result (contract returns “->”)

• Note: It is hard to read code when lambda is used at the
head of an application

• ((lambda (x) (* x x)) (+ 13 14))

• We can rewrite this as:
• (local ((define x (+ 13 14)))
 (* x x))

COMP 211, Spring 2009 16

Lambda in Becoming Pervasive in PL

Python
“By popular demand, a few

features commonly found
in functional programming
languages and Lisp have
been added to Python [...]”

Guido van Rossum,
4.7.4 Lambda Forms,

Python Tutorial

COMP 211, Spring 2009 17

Lambda in C#

“anonymous methods”

COMP 211, Spring 2009 18

For Next Class
• Homework due Monday

• Continue Reading:
• Ch 21-22: Abstracting designs and first class

functions

