
1

 Lambda the Ultimate

Corky Cartwright
Vivek Sarkar

Department of Computer Science
Rice University

COMP 211, Spring 2010 2

Function filter2: variant of filter1
function from last lecture	

;; filter2 : test lon -> lon "

;; to construct a list of those numbers n"

;; in alon such that (test n) is true"

(define (filter2 test alon) "

 (cond [(empty? alon) empty] "

 [else!

 (cond [(test (first alon)) "

 (cons (first alon)"

 (filter2 test (rest alon)))]"

 [else (filter2 test (rest alon) t)])]))"

Function filter2 takes function test as a “data” input

COMP 211, Spring 2010 3

How can we pass different test
functions as data for filter2?	

1) By introducing a top-level definition

(define (Positive? n) (> n 0))"
(check-expect !
 (filter2 Positive? '(-1 2 0 3)) "
 '(2 3))"

2) By using a local expression to avoid
cluttering top-level definitions --- how?

COMP 211, Spring 2010 4

How can we pass different test
functions as data for filter2?	

2) By using a local expression to avoid
cluttering top-level definitions …

(check-expect!
 (filter2 "
 (local ((define (Positive? n) (> n 0)))!
 Positive?)!

 '(-1 2 0 3)) "
 '(2 3))"

 … at the expense of cluttered local expressions

COMP 211, Spring 2010 5

Motivation for λ-notation
•  It is sometimes convenient to build new

functions in the middle of a computation
without having to name them
•  Often, these functions are used only once
•  There may even be an unbounded number of

such functions created at run-time
•  Examples: arguments to functions like

•  map,
•  filter,
•  fold,
•  and many more "higher-order" functions

COMP 211, Spring 2010 6

λ-notation: Basic Idea
•  λ-notation was invented by mathematicians. For

example, given f (x) = x2 + 1 what is f? f is the
function that maps x to x2 + 1 which we might write
as x → x2 + 1. The latter avoids naming the function.

•  The notation λ x . x2 + 1 evolved instead of x → x2 + 1

•  In Scheme, we write (lambda (x) (+ (* x x) 1))
instead of λ x . x2 + 1

COMP 211, Spring 2010 7

How can we pass different test
functions as data for filter2?	

3) By using lambda expressions …

(check-expect!
 (filter2 "
 (lambda (n) (> n 0))
 '(-1 2 0 3)) "
 '(2 3))"

… note that lambda expressions are anonymous!

Lambda Expression
•  A lambda expression consists of

•  The keyword lambda
•  A list of variable names denoting arguments
•  An expression denoting a function of the arguments

•  (lambda (var1 var2 … varn) exp)
•  exp is an arbitrary expression
•  vari is a variable (argument) that is only available

for use within exp

•  A lambda-expression is just a value with a type
that happens to be a function

COMP 211, Spring 2010

COMP 211, Spring 2010 9

Function definitions
revisited

•  A function definition basically defines a function value for a
given name, just like any other variable definition defines a
value for a name

•  (define (f x) (+ (* x x) 1)) is just short hand for
(define f (lambda (x) (+ (* x x) 1)))

•  Question: when is the divide-by-zero error encountered in the
following top-level definitions?

•  (define x (/ 1 0))
•  (define f (lambda (n) (/ n 0)))

COMP 211, Spring 2010 10

Why λ?
The name was used by its inventor

Alonzo Church, logician, 1903-1995.
Princeton, NJ
Introduced lambda in 1930’s to

formalize math

Church is Corky’s academic great-
grandfather

Alonzo Church -> Hartley Rogers ->
David Luckham -> Corky Cartwright

COMP 211, Spring 2010 11

Scope for a Lambda Abstraction
•  Argument scope:

(lambda (x1 ... xn) body) introduces the variables x1 ... xn
which have body as their scope (except for holes)

•  Example:
 (lambda (x) (+ (* x x) 1)))

•  Scope for variable introduced by define. At the top-level,
(define f rhs)introduces the variable f which is visible
everywhere (except in holes introduced by local definitions in f).

•  Inside
 (local [(define f1 rhs1) ... (define fn rhsn)) body)

 the variables f1 ... fn have body as their scope.
•  Recursion comes from define not from lambda!

COMP 211, Spring 2010 12

Example
Now we can write the following program

(define l '(1 2 3 4 5))
(define a
 (local ((define (square x)
 (* x x)))
 (map square l)))

concisely as

(define l '(1 2 3 4 5))
(define a (map (lambda (x) (* x x)) l))

COMP 211, Spring 2010 13

 lambda vs. local
•  Recall that:
(lambda (x1 ... xn) exp)
is equivalent to
(local ((define (f x1 ... xn) exp)) f)
•  Is lambda as general as local? No!

How do I introduce a recursive function definition using
lambda alone?

•  It can be done but it involves deep, subtle, and messy
use of λ-notation (topic in Comp 311).

•  Direct formulations of recursion rely on the name of
the defined function, which lambda lacks.

COMP 211, Spring 2010 14

Evaluation of λ-expressions
How do we evaluate a λ-expression
 (lambda (x1 ... xn) body) ?
It's a value --- no further reduction can be performed!

What about λ-applications?
β-reduction rule
((lambda (x1 … xn) body) V1 … Vn)=> body[x1:=V1 … xn:=Vn]
where V1,...,Vn are values and body[x1:=V1 ... xn:=Vn] means

body with x1 replaced by V1, ..., xn replaced by Vn.
Examples:

 ((lambda (x) (* x 5)) 4) => (* 4 5) => 20

 ((lambda (x) (x x)) (lambda (x) (x x)))
=> ((lambda (x) (x x)) (lambda (x) (x x)))
=> ... ???

COMP 211, Spring 2010 15

More Examples
 ((lambda (x y z) (+ x y z)) 1 2 3)

=> (+ 1 2 3)

 (((lambda (x) (lambda (y) (+ x y))) (* 2 3)) 4)

=> (((lambda (x) (lambda (y) (+ x y))) 6) 4)

=> ((lambda (y) (+ 6 y)) 4)

=> (+ 6 4)

=> 10

COMP 211, Spring 2010 16

Fine Points of Substitution
•  Only the free occurrences of a variable are replaced. A variable

occurrence v in an expression E is free iff it does not refer to a
variable bound in E. A non-free (bound) variable occurrence v in
expression E must be embedded in a local scope (defined by a
lambda or a local) within E.

•  Examples:
•  Neither occurrence of x is free in (lambda (x) x)
•  Neither occurrence of x is free in (local [(define x 12)] x)
•  x is free in (+ y x)
•  x is free in (lambda (y) (+ y x))
•  Only the first occurrence of x is free in

 ((+ x (local [(define x 12)] (* x 13))

Example: Lambda expression
as a return value
(define (gen-add-by n) !

 (lambda (x) (+ x n)))!

What do the following expressions evaluate to?
(gen-add-by 1)!

((gen-add-by 1) 1)!

((gen-add-by 2) ((gen-add-by 1) 1))!

COMP 211, Spring 2010

COMP 211, Spring 2010 18

Nesting λ	

 (lambda (x) (lambda (y) (+ (* x y) (* 4 5)))
=> (lambda (x) (lambda (y) (+ (* x y) (* 4 5)))

 ((lambda (x) (lambda (y) (+ x 1)) 5)
=> (lambda (y) (+ 5 1))

 ((lambda (x) (lambda (x) (+ x 1)) 5)
=> (lambda (x) (+ x 1))

;; NOTE: the red y is a free variable
 ((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))
=> (lambda (y) (y (lambda (z) (+ y z)))))

 which is WRONG (but this case can’t arise in legal Scheme evaluations)

COMP 211, Spring 2010 19

Safe Substitution
To salvage the correctness of β-reduction in the general case, we must stipulate that

the rule uses safe substitution, where safe substitution renames local variables in
the code body that is being modified by the substitution to avoid capturing free
variables in the argument expression that is being substituted.

 ((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))
 => ((lambda (x) (lambda (f) (f x))) (lambda (z) (+ y z)))
 => (lambda (f) (f (lambda (z) (+ y z))))

We will not hold you responsible on exams for understanding either safe
substitution or the subtleties of β-reduction when the argument
expressions contain free variables.

COMP 211, Spring 2010 20

When Should I Use a
Lambda?

•  It makes sense to use a lambda instead of define when
•  the function is not recursive;
•  the function is needed only once; and
•  the function is either

•  being passed to another function, or
•  being returned as the final result (contract returns “->”)

•  Note: It is hard to read code when lambda is used at the head of
an application

•  ((lambda (x) (* x x)) (+ 13 14))

•  We can rewrite this as:
•  (local ((define x (+ 13 14))) (* x x))

COMP 211, Spring 2010 21

Lambda is Becoming Pervasive in PL
Python
“By popular demand, a few

features commonly found
in functional programming
languages and Lisp have
been added to Python [...]”

Guido van Rossum,
4.7.4 Lambda Forms,

Python Tutorial

Examples of lambda in Python
identityFunc = lambda x: x"

print identityFunc(2) # prints 2"

sumFunc = lambda a, b: a + b"

print sumFunc(2, 3) # prints 5"

squareFunc = lambda a: a * a"

cubeFunc = lambda a: a * a * a"

rootFunc = lambda a: a ** 0.5"

compose = lambda f, g: lambda x: f(g(x))"

print compose(squareFunc, rootFunc)(4.0) # prints 4.0"

print compose(rootFunc, cubeFunc)(4.0) # prints 8.0"

COMP 211, Spring 2010

Examples of lambda in F#
(anonymous functions)

(fun n -> n * 2) // anonymous function (a lambda expr)"

List.map (fun n -> n * 2) [1;2;3] // returns [2;4;6]"

 “Lambda expressions are especially useful when you want to perform
operations on a list or other collection and want to avoid the extra work
of defining a function. Many F# library functions take function values as
arguments, and it can be especially convenient to use a lambda
expression in those cases.”

 Source: http://msdn.microsoft.com/en-us/library/dd233201(VS.100).aspx

COMP 211, Spring 2010

Use of Functions as Data in
Google’s Map-Reduce Framework

•  Application of functional programming concepts to
data-center-scale distributed systems

•  Filter = computation specified by map function
•  Aggregator = computation specified by reduce

(fold) function

Source: Figure 10.6 from
textbook

Reference: “MapReduce: Simplified Data
Processing on Large Clusters”, J. Dean &
S. Ghemawat, OSDI 2004.
http://labs.google.com/papers/mapreduce.html

Source for figure: Figure 10.6 from
“Principles of Parallel Programming” by
C.Lin & L. Snyder

