
1

Generative (Non-structural)
Recursion

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

The Recipe Until Now
• Data analysis and design including generic

templates
• For each function in the design (visible interface)

• Contract, purpose
• Examples (stated as tests)
• Template Instantiation

• Precisely followed the structure of the data we consume
• Using this template, we can do "almost everything”

• Testing

COMP 211, Spring 2009 3

Structural Recursion
• Is the best problem-solving strategy

• For the vast majority of functions over recursive data.
• Yields satisfactory efficiency in most cases.

• Cannot, in principle, compute all computatble
functions

• Is ill-suited to an important class of problems that
technically can be solved using structural
recursion but can be solved more cleanly and
efficiently using non-structural methods.

COMP 211, Spring 2009 4

Non-structural Functional Programs

• Best explained by presenting some
examples before discussing the general
template.

Problem: efficiently sort a list of numbers
Good solutions: merge-sort, quick-sort

COMP 211, Spring 2009 5

Merge Sort
• Not going to present the actual program because it

will be an exercise on the next homework
assignment.

• Idea:
• Base case: list of length 0 or 1
• Inductive case:

split the list into two (almost) equal parts
sort each part
merge the two results

Why non-structural?

COMP 211, Spring 2009 6

Quick Sort
• Invented by C.A.R. ("Tony") Hoare
• Functional version is derived from the imperative

(destructive) algorithm; less efficient but still
works very well

• Idea:
• Base case: list of length 0 or 1
• Inductive case:

• partition the list into the singleton list containing first, the list
of all items <= first, and the list of all items > first

• sort the the lists of lesser and greater items
• return (sorted lesser) + (first) + (sorted greater) where + means

list concatenation (append)

COMP 211, Spring 2009 7

Quicksort Breaks Structural Template

(define (qsort l)
 (cond [(empty? l) empty]
 [else
 (local ((define pivot (first l))
 (define other (rest l)))
 (append
 (qsort [filter (lambda (x) (<= x pivot)) other])
 (list pivot)
 (qsort [filter (lambda (x) (> x pivot)) other])))]))

COMP 211, Spring 2009 8

Quicksort Still Terminates
(define (qsort l)
 (cond [(empty? l) empty]
 [else
 (local ((define pivot (first l))
 (define other (rest l)))
 (append
 (qsort [filter (lambda (x) (<= x pivot)) other])
 (list pivot)
 (qsort [filter (lambda (x) (> x pivot)) other])))]))

Why?

COMP 211, Spring 2009 9

Not so quick sort
(define (qsort l)
 (cond [(empty? l) empty]
 [else
 (local ((define pivot (first l))
 (define other l))
 (append
 (qsort [filter (lambda (x) (<= x pivot)) other])
 (list pivot)
 (qsort [filter (lambda (x) (> x pivot)) other])))]))

COMP 211, Spring 2009 10

A More General Recipe

• Data analysis and design
• Contract, purpose, header
• Examples
• Template Instantiation

• A bit more flexible than before (non-structural)
• Explicit termination argument
• Testing

COMP 211, Spring 2009 11

Generative Template

 (define (generative-recursive-fun problem)
 (cond
 [(trivially-solvable? problem)
 (determine-solution problem)]
 [else
 (combine-solutions
 ... problem ...
 (generative-recursive-fun (generate-problem-1 problem))
 …
 (generative-recursive-fun (generate-problem-n problem)))]))

COMP 211, Spring 2009 12

Sample termination argument
• Quicksort terminates because each recursive call

(qsort l)
 reduces the metric (length l). In particular, both
 [filter (lambda (x) (<= x pivot)) other]) and
 [filter (lambda (x) (> x pivot)) other])
 are sublists of other which is shorter than l

• Without such an argument a non-structural
program must be considered incomplete.

COMP 211, Spring 2009 13

General framework for proving termination

• Devise a metric (a size function) with some
familiar structural type as the output (usually nat)
for the problem and show that each recursive call
involves a smaller problem than the original one.

• In pathological cases, this ordering may require
the use of lexicographic ordering on n-tuples (or
unbounded sequences) of data values. These
pathologies are rare in practice. Not a single
occurrence in DrJava code base.

COMP 211, Spring 2009 14

Why Generative Recursion?
• What if we can choose between

• a structural solution and
• a generative solution?

• Often, the second is much faster
• Sorting
• Simpler example from book: greatest-common-divisor

(GCD) gcd(6,9)=3, gcd (99, 18) = 9, etc.
structural version so brain-damaged I could not follow
the narrative. I had to infer what the code did.
Rant: local function in book often have no contracts!

• Even better example: searching an ordered list (but not
functional!)

COMP 211, Spring 2009 15

Are all data types structural?
• Surprisingly controversial question.
• Book says no.
• Walid Taha said no in Comp 210.
• I say yes! Why? Every computational representation uses

inductively defined trees. Even real numbers? Floating point.
• Question: is the structural ordering always useful in proving

properties of a type? What about rationals? Floating point
numbers?

• What about infinite streams and trees? How do we define the
domain of functions A → B? The naive answer is non-
structural. Use computable subset of set theoretic definition of
A → B. There is a much better structural answer but WAY
beyond scope of this course. Material sometimes covered in
Comp 311.

COMP 211, Spring 2009 16

Some Algorithm Families
• Sorting and Searching
• Mathematical iteration: bisection, Newton's

method.
• Backtracking (traversing a maze, 8 queens)
• Dynamic Programming (with Java)

COMP 211, Spring 2009 17

Termination Argument
; If we start with an interval S wide, then
; we only need a limited number of steps
; to reach an interval R wide. In particular,
; the intervals will proceed as S, S/2, S/4,
; ..., and will reach size smaller than R in
; log2 (R/S) steps.

COMP 211, Spring 2009 18

The Tradeoff (if we can chose)
• How do we chose between

• a structural solution and
• a generative solution?

• Speed vs. clarity
• Chapter 26 has a very nice example

• Greatest-common-divisor (GCD)
• gcd(6,9)=3, gcd (99, 18) = 9, etc.

COMP 211, Spring 2009 19

For Next Class
• Homework due Monday
• Continue Reading:

• Ch 25-28: Non-structural recursion.
• Start on next homework assignment

• (mergesort lon) (Problem 26.1.2 but top-
down rather than bottom-up version of
mergesort

