
1

Generative Recursion Illustrated

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Big Picture

• Functional program design in Scheme
• Data-directed (functional) program design 2-10
• Algorithm design 11-15
• Applied functional programming 16-18

• Object-oriented (OO) program design in Java 19-45
• …

COMP 211, Spring 2009 3

Plan for Today
• Template for Generative Recursion
• Looks at a simple example of generative

recursion (algorithms) in detail: (very)
simple parsing

• Book: focuses on more challenging
numerical algorithms but the challenge is
the underlying mathematics not the coding

COMP 211, Spring 2009 4

Generative Recursion
• Structural recursion

 Template derived directly from data definition
 Termination for all programs is the same
 Technically includes complete structural recursion such
 as naive Fibbonacci
 f(n) = f(n-1) + f(n-2)

• Generative recursion
 Data definition does not directly guide design of function
 Must address termination in each such function

COMP 211, Spring 2009 5

Impact on Design Recipe
• Only effects:

• choice of template; and
• inclusion of termination argument

• Impact on template:
• “Divide and Conquer” decomposition of the problem

requires some creativity
• Determine solution for trivial problems
• Determine how to break big problems into smaller ones
• Determine how to combine solutions of smaller problems to

solve the bigger problem

COMP 211, Spring 2009 6

Generative Template
(define (generative-rec-fun problem)
 (cond
 [(trivially-solvable? problem)
 (determine-solution problem)]
 [else
 (combine-solutions
 ... problem ...
 (generative-rec-fun (generate-problem-1 problem))
 …
 (generative-rec-fun (generate-problem-n problem)))]))

COMP 211, Spring 2009 7

Numerical Algorithms; Stream Algorithms
Algorithms that process real numbers are not structural
Examples:
• Bi-section for finding roots
• Newton's algorithm for finding root of a function f (square root best

known application)
• Formulas for constructing fractals
• Series approximations
Explanation: real numbers are not a structural type (Dedekind cuts,

Cauchy sequences)
Algorithms that process (infinite) streams are not structural
• Parsing
• Arithmetic operations on radix representations of real numbers
Explanation: (inifinte) streams are not a structural type

COMP 211, Spring 2009 8

Example of stream-processing algorithm

Parsing

COMP 211, Spring 2009 9

(Very) Simple Parsing
• Used by pretty every time a program reads a text file
• Basic idea: a file is a sequence of proper chars

separated by newline (improper) chars. A read
operation returns the sequence of chars starting at the
cursor position ending with the next newline and
advances the cursor. In a functional setting, a stream
of chars is converted to a stream of lines

 parse ‘(a b newline c d e f newline g h i ...

produces
 ‘((a b) (c d e f) (g h i) ...)

• Is there a divide and conquer problem decomposition
for doing this?

COMP 211, Spring 2009 10

Parsing cont.
Consider writing the following function
; parse : (listOf symbol) -> (listOf (listOf symbol))

Note; symbol is a convenient subsitute for char

We will use helper functions:
• first-line

 which returns all symbols up to first ‘newline
• rest-lines

 which returns all symbols after first ‘newline

COMP 211, Spring 2009 11

Parsing cont.
Collective in class exercise

COMP 211, Spring 2009 12

For Next Class
• Homework due next Monday

• Reading:
• Study chs. 25-28: many generative (non-

structural) algorithms
• Lab

• Practice with generative recursion

