Complexity and Accumulators

Corky Cartwright
Vivek Sarkar
Department of Computer Science
Rice University
Today’s goals

- Accounting for cost of computation (complexity)
- Accumulating “history” using accumulators
Example: Partial Sums

;; sums: (listOf number) -> (listOf number)
;; (sums alon) computes the partial sums for n; it returns a list of
;; numbers, psum, such that the ith element of psum is the sum of the
;; numbers preceding (and including) the ith element of alon e.g.,
;; (sums '(1 2 3 4 5)) = '(1 3 6 10 15)

(define (sums alon)
 (cond [(empty? alon) empty]
 [else
 (cons (first alon)
 (map (lambda (x) (+ x (first alon)))
 (sums (rest alon))))])))
Question: how many additions does function sums perform?

Reduction sequence:
…(list 5)… => . . . =>
…(list 4 (+ 5 4))… =>
…(list 4 9)… => . . . =>
…(list 3 (+ 4 3) (+ 9 3))… => . . . =>
…(list 3 7 12)… => . . . =>
…(list 2 (+3 2) (+7 2) (+12 2))… => . . . =>
…(list 2 5 9 14)… => . . . =>
…(list 1 (+2 1) (+5 1) (+9 1) (+14 1))… => . . . =>
(list 1 3 6 10 15)
Cost accounting

- Measure computation cost in reduction steps using our reduction semantics. Models actual cost reasonably well.

- Consider three algorithms
 - Cost-A(n) = 2*n^3 + n^2 + 50
 - Cost-B(n) = 3*n^2 + 100
 - Cost-C(n) = 2^n

- Which algorithm is best?
- Which algorithm works best for large n?
- Can we formalize this notion?
Order of Complexity

- We'll say that Cost-X is “order \(f(n) \)” , or simply “\(O(f(n)) \)” (read “Big-O of \(f(n) \)”) if
 - Cost-X(n) < factor * \(f(n) \) for sufficiently large n

- Examples:
 - Cost-A(n) = 2*\(n^3 \) + \(n^2 \) + 1 Cost-A is \(O(n^3) \)
 - Cost-B(n) = 3*\(n^2 \) + 10 Cost-B is \(O(n^2) \)
 - Cost-C(n) = \(2^n \) Cost-C is \(O(2^n) \)
Famous "Complexity Classes"

- $O(1)$: constant-time (head, tail)
- $O(\log n)$: logarithmic (binary search)
- $O(n)$: linear (vector multiplication)
- $O(n \log n)$: "n log n" (sorting)
- $O(n^2)$: quadratic (matrix addition)
- $O(n^3)$: cubic (matrix multiplication)
- $n^{O(1)}$: polynomial (...many! ...)
- $2^{O(n)}$: exponential (guess password)
Improving Performance

- The sums function performs $n(n-1)/2$ additions to compute partial sums for a list of n numbers
- We can do much better than $O(n^2)$!
- What information do we need to do better?
 - This is basically the “lost history” in the recursive call
Accumulator version of same program

- Idea: as the list is successively decomposed into first and rest, the sums function can accumulate the sum of the numbers to the left of rest.

- Template Instantiation:
 (define (sums-help lon sum)
 (cond [(empty? lon) ...]
 [else ... (first lon) ... sum ...
 (sums-help (rest lon) ..)]))
Accumulator version of same program

;; sums-help: (listOf number) number -> (listOf number)
;; Invariant: sum is the sum of the numbers that preceded alon in alon0
(define (sums-help alon sum)
 (cond
 [(empty? alon) empty]
 [else
 (local [(define new-sum (+ sum (first l)))]
 (cons new-sum (sums-help (rest l) new-sum))))])

;; sums: (listOf number) -> (listOf number)
(define (sums alon0) (sums-help alon0 0))
Question: how many additions does the accumulator version perform?

Reduction sequence:
(sums-help (list 1 2 3 4 5) 0) => . . . =>

...(+ 0 1)... => . . . =>

(cons 1 (sums-help (list 2 3 4 5) 1)) => . . . =>

...(+ 1 2)... => . . . =>

(cons 1 (cons 3 (sums-help (list 3 4 5) 3))) => . . . =>

...(+ 3 3)... => . . . =>

(cons 1 (cons 3 (cons 6 (sums-help (list 4 5) 6)))) => . . . =>

...(+ 6 4)... => . . . =>

(cons 1 (cons 3 (cons 6 (cons 10 (sums-help (list 5) 10))))) => . . . =>

...(+ 10 5)... => . . . =>

(cons 1 (cons 3 (cons 6 (cons 10 (cons 15 empty))))))
Formulating an Accumulator

- If we decide to use an accumulator, we need to answer three questions:
 - What should the initial value for the accumulator be?
 - How will we modify the accumulator in each recursive call? (What will we “accumulate”?)
 - How will we use the accumulator to produce the final result?
Naïve List Reversal

(define (rev l)
 (cond [(empty? l) empty]
 [else (append (rev (rest l))
 (list (first l)))]))
Reversal using an accumulator

;; Invariant: ans is the reversed list of all items that preceded l in l0

(define (rev-help l ans)
 (cond [(empty? l) ans]
 [(else (rev-help (rest l) (cons (first l) ans)))]))

(define (fast-rev l0) (rev-help l empty))
Added Expressivity

- Code simplification using accumulators
- Consider the list reverse function
 - Takes '(1 2 3 4 5) and produces '(5 4 3 2 1)
- How did we write this function in the naïve version? Used append. Ugh.
- What information did we use to do better?
 - This is basically the “lost history” of the recursive call
- Is this list reversal example really different from the list accumulation example?
Naïve List Flattening

- (flatten: (genListOf symbol) -> (listOf symbol))
 (flatten agl) returns a list of the symbols in order of appearance
 (flatten '((a b) c ((d))) = '(a b c d)
- (define (flatten agl)
 (cond [(empty? agl) empty]
 [else (local [(define head (first agl))
 (define tail (flatten (rest agl)))]
 (cond [(empty? head) tail]
 [(cons? head) (append (flatten head) tail)]
 [else (cons head tail)])))))
- Note: we wrote this function so that the symbol type can be replaced by any non-list type.
Accumulator version

;; flatten-help: (genListOf symbol) (listOf symbol) -> (listOf symbol)
;; (flatten agl los) returns a list of the symbols in agl appended to los
;; (flatten '((a b) c ((d)) '(e)) = '(a b c d e)

;; What is the invariant for the accumulator variable los?

(define (flatten-help agl los)
 (cond [(empty? agl) los]
 [else (local [(define head (first agl))
 (define tail (flatten-help (rest agl) los))]
 (cond [(empty? head) tail]
 [(cons? head) (flatten-help head tail)]
 [else (cons head tail)]))])