
1

Complexity and Accumulators

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Todayʼs goals
• Overview of accounting for cost of computation

(complexity)
• Intuitively, accumulators can capture “history”
Accumulators can be used to
• Improve performance
• Avoid non-termination (uncommon)
• Improve expressivity (simplify code)
• How do we recognize when they are needed?

COMP 211, Spring 2009 3

Cost accounting
• Measure computation cost in reduction steps using

our reduction semantics. Models actual cost
reasonably well.

• Consider three algorithms
• Cost-A(n) = 2*n3 + n2 + 50
• Cost-B(n) = 3*n2 + 100
• Cost-C(n) = 2n

• Which algorithm is best?
• Which algorithm works best for large n?
• Can we formalize this notion?

COMP 211, Spring 2009 4

Order of Complexity
• We'll say that Cost-X is “order f (n))”, or simply

“O(f (n))” (read “Big-O of f (n))”) if
• Cost-X(n) < factor * f (n) for sufficiently large n

• Examples:
• Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
• Cost-B(n) = 3*n2 + 10 Cost-B is O(n2)
• Cost-C(n) = 2n Cost-C is O(2n)

COMP 211, Spring 2009 5

Famous "Complexity Classes"
• O (1) constant-time (head, tail)
• O (log n) logarithmic (binary search)
• O (n) linear (vector multiplication)
• O (n * log n) "n log n" (sorting)
• O (n2) quadratic (matrix addition)
• O (n3) cubic (matrix multiplication)
• nO(1) polynomial (…many! …)
• 2O(n) exponential (guess password)

COMP 211, Spring 2009 6

Improving Performance
• Consider the sequence accumulation function

• Takes '(1 1 2 3 -1) and produces '(1 2 4 7 6)
• How do we write this function using the list

template?
• We can do much better!
• What information do we need to do better?

• This is basically the “lost history” in the recursive call

COMP 211, Spring 2009 7

Partial Sums Program
;; sums: (listOf number) -> (listOf number)
;; (sums alon) replaces each number n in alon by the sum
;; of the numbers preceding (and including) n.
;; (sums '(1 2 3)) = '(1 3 6)
(define (sums alon)
 (cond [(empty? alon) empty]
 [else
 (cons (first alon)
 (map (lambda (x) (+ x (first alon)))
 (sums (rest alon))))]))

COMP 211, Spring 2009 8

Accumulator version of same program

• Idea: as the list is successively decomposed
into first and rest, the sums function can
accumulate the sum of the numbers to the
left of rest.

• Template Instantiation:
(define (sums-help lon sum)
 (cond [(empty? lon) …]
 [else … (first lon) … sum …
 (sums-help (rest lon) ..)]))

COMP 211, Spring 2009 9

Accumulator version of same program

;; sums-help: (listOf number) number -> (listOf number)
(define (sums-help alon sum)
 (cond
 [(empty? alon) empty]
 [else
 (local [(define new-sum (+ sum (first l)))]
 (cons new-sum (sums-help (rest l) new-sum)))]))
;; sums: (listOf number) -> (listOf number)
(define (sums alon) (sums-help alon 0))

COMP 211, Spring 2009 10

Formulating an Accumulator
• If we decide to use an accumulator, we need

to answer three questions:
• How will we use the accumulator to produce

the final result?
• How will we modify the accumulator in each

recursive call? (What will we “accumulate”?)
• What should the initial value for the

accumulator be?

COMP 211, Spring 2009 11

Another Example
• ;; (flatten: (genListOf symbol) -> (listOf symbol)

;; (flatten agl) returns a list of the symbols in order of appearance
;; (flatten '((a b) c ((d))) = '(a b c d)

• (define (flatten agl)
 (cond [(empty? agl) empty]
 [else (local [(define head (first agl))
 (define tail (flatten (rest agl)))]
 (cond [(empty? head) tail]
 [(cons? head) (append (flatten head) tail)]
 [else (cons head tail)]))]))

• Note: we wrote this function so that the symbol type can be replaced by any
non-list type.

COMP 211, Spring 2009 12

Accumulator version
• ;; flatten-help: (genListOf symbol) (listOf symbol) -> (listOf symbol)

;; (flatten agl los) returns a list of the symbols in agl appended to los
;; (flatten '((a b) c ((d)) '(e)) = '(a b c d e)
;;
;; Template Instantiation:
 (define (flatten-help agl los)
 (cond [(empty? agl) …]
 [else …. (first agl) … los … (flatten-help agl ..) …]))

 (define (flatten-help agl los)
 (cond [(empty? agl) los]
 [else (local [(define head (first agl))
 (define tail (flatten-help (rest agl) los))]
 (cond [(empty? head) tail]
 [(cons? head) (flatten-help head tail)]
 [else (cons head tail)]))]))

COMP 211, Spring 2009 13

Other Examples
• Graph searching: avoid repetition/cycles by

accumulating set of nodes already seen and testing
membership in this set. In most cases, mutation
(marking) is better in practice.

COMP 211, Spring 2009 14

Added Expressivity
• Code simplication using accumulators
• Consider the list reverse function

• Takes '(1 2 3 4 5) and produces '(5 4 3 2 1)

• How do we write this function using the list
template? Use append. Ugh.

• What information do we need to do better?
• This is basically the “lost history” of the recursive call

• Is this list reversal example really different from
the list accumlation example?

COMP 211, Spring 2009 15

Naive reverse
(define (rev l)
 (cond [(empty? l) empty]
 [else (append (rev (rest l))
 (list (first l))]))

COMP 211, Spring 2009 16

Reverse using an accumulator
(define (rev-help l ans)
 (cond [(empty? l) ans]
 [else (rev-help (rest l) (cons (first l) ans))]))

(define (fast-rev l) (rev-help l empty))

COMP 211, Spring 2009 17

For Next Class
• Bonus lecture this afternoon at 2 in DH 1042
• Homework due Monday
• Midterm:

• Take home exam distributed Friday February
10; due Friday, February 17.

• Covers Scheme Material (Chs. 1- 32 of HTDP
except 28, 29.3)

• Reading:
• Chs 29 .1, 29.2, 30-32

