Complexity and Accumulators

Corky Cartwright

Department of Computer Science
Rice University

Today's goals

- Overview of accounting for cost of computation (complexity)
- Intuitively, accumulators can capture "history"

Accumulators can be used to

- Improve performance
- Avoid non-termination (uncommon)
- Improve expressivity (simplify code)
- How do we recognize when they are needed?

Cost accounting

- Measure computation cost in reduction steps using our reduction semantics. Models actual cost reasonably well.
- Consider three algorithms
- $\operatorname{Cost}-\mathrm{A}(\mathrm{n})=2 * \mathrm{n}^{3}+\mathrm{n}^{2}+50$
- $\operatorname{Cost-B}(n)=3 * n^{2}+100$
- Cost-C(n) $=2^{\mathrm{n}}$
- Which algorithm is best?
- Which algorithm works best for large n ?
- Can we formalize this notion?

Order of Complexity

- We'll say that Cost-X is "order $f(\mathrm{n})$)", or simply " $O(f(\mathrm{n})$)" (read "Big-O of $f(\mathrm{n}))$ ") if
- Cost-X(n) < factor $* f(\mathrm{n})$ for sufficiently large n
- Examples:
- Cost-A(n) $=2 * n^{3}+n^{2}+1 \quad$ Cost-A is $O\left(n^{3}\right)$
- Cost-B(n) $=3 * \mathrm{n}^{2}+10 \quad$ Cost-B is $O\left(\mathrm{n}^{2}\right)$
- $\operatorname{Cost}-\mathrm{C}(\mathrm{n})=2^{\mathrm{n}}$

Cost-C is $O\left(2^{\mathrm{n}}\right)$

Famous "Complexity Classes"

- O (1)
- $O(\log n)$
- O (n)
- $O(n * \log n)$
- $O\left(n^{2}\right)$
- $O\left(n^{3}\right)$
- $n^{O(1)}$
- $2^{O(n)}$
constant-time (head, tail) logarithmic (binary search)
linear (vector multiplication)
"n $\log \mathrm{n}$ " (sorting)
quadratic (matrix addition)
cubic (matrix multiplication)
polynomial (...many!...)
exponential (guess password)

Improving Performance

- Consider the sequence accumulation function
- Takes '(1 123 -1) and produces '(1 247 6)
- How do we write this function using the list template?
- We can do much better!
- What information do we need to do better?
- This is basically the "lost history" in the recursive call

Partial Sums Program

;; sums: (listOf number) -> (listOf number)
;; (sums alon) replaces each number n in alon by the sum
;; of the numbers preceding (and including) n.
;; (sums '(1 23 3)) = '(1 36 6)
(define (sums alon)
(cond [(empty? alon) empty]
[else
(cons (first alon)
(map (lambda (x) (+ x (first alon)))
(sums (rest alon))))]))

Accumulator version of same program

- Idea: as the list is successively decomposed into first and rest, the sums function can accumulate the sum of the numbers to the left of rest.
- Template Instantiation:
(define (sums-help lon sum)
(cond [(empty? lon) ...]
[else ... (first lon) ... sum ...
(sums-help (rest lon) ..)]))

Accumulator version of same program

;; sums-help: (listOf number) number -> (listOf number) (define (sums-help alon sum)
(cond
[(empty? alon) empty]
[else
(local [(define new-sum (+ sum (first I)))]
(cons new-sum (sums-help (rest l) new-sum)))]))
;; sums: (listOf number) -> (listOf number)
(define (sums alon) (sums-help alon 0))

Formulating an Accumulator

- If we decide to use an accumulator, we need to answer three questions:
- How will we use the accumulator to produce the final result?
- How will we modify the accumulator in each recursive call? (What will we "accumulate"?)
- What should the initial value for the accumulator be?

Another Example

- ;; (flatten: (genListOf symbol) -> (listOf symbol)
;; (flatten agl) returns a list of the symbols in order of appearance
;; (flatten '((a b) c ((d))) = '(a b c d)
- (define (flatten agl)
(cond [(empty? agl) empty]
[else (local [(define head (first agl))
(define tail (flatten (rest agl)))] (cond [(empty? head) tail] [(cons? head) (append (flatten head) tail)] [else (cons head tail)]))]))
- Note: we wrote this function so that the symbol type can be replaced by any non-list type.

Accumulator version

;; flatten-help: (genListOf symbol) (listOf symbol) -> (listOf symbol)
;; (flatten agl los) returns a list of the symbols in agl appended to los
;; (flatten '((a b) c ((d)) '(e)) = '(a b c d e)
;; Template Instantiation: (define (flatten-help agl los) (cond [(empty? agl) ...]
[else (first agl) ... los ... (flatten-help agl ..) ...]))
(define (flatten-help agl los) (cond [(empty? agl) los]
[else (local [(define head (first agl))
(define tail (flatten-help (rest agl) los))]
(cond [(empty? head) tail]
[(cons? head) (flatten-help head tail)] [else (cons head tail)])]]))

Other Examples

- Graph searching: avoid repetition/cycles by accumulating set of nodes already seen and testing membership in this set. In most cases, mutation (marking) is better in practice.

Added Expressivity

- Code simplication using accumulators
- Consider the list reverse function
- Takes '(1 234 5) and produces '(5 432 1)
- How do we write this function using the list template? Use append. Ugh.
- What information do we need to do better?
- This is basically the "lost history" of the recursive call
- Is this list reversal example really different from the list accumlation example?

Naive reverse

(define (rev l)
(cond [(empty? I) empty] [else (append (rev (rest I))
(list (first I))]))

Reverse using an accumulator

(define (rev-help I ans)
(cond [(empty? I) ans]
[else (rev-help (rest I) (cons (first I) ans))]))
(define (fast-rev I) (rev-help I empty))

For Next Class

- Bonus lecture this afternoon at 2 in DH 1042
- Homework due Monday
- Midterm:
- Take home exam distributed Friday February 10; due Friday, February 17.
- Covers Scheme Material (Chs. 1- 32 of HTDP except 28, 29.3)
- Reading:
- Chs 29 .1, 29.2, 30-32

