
1

Primitives; function and data definitions

Prof. Robert “Corky” Cartwright
Department of Computer Science
Rice University

COMP 211, Spring 2009 2

Course Overview

• Functional program design in Scheme
• Data-directed (functional) program design 2-12
• Algorithm design 13-15
• Applied functional programming 16-18

• Object-oriented (OO) program design in Java 19-45
• …

COMP 211, Spring 2009 3

Todayʼs Goals
• Common basic types
• Common primitive operations
• Rules for reducing programs
• Simple programs

 = Variable definitions
 + Function definitions

• The design recipe
• Errors
• Data definitions

COMP 211, Spring 2009 4

Basic (primitive) types of data
numbers:
• naturals: 0, 1, 2, … // number theory in mathematics
• integers: …, -1, 0, 1, … // include negatives
• rational numbers: 3/4, 0, -1/3, … // include fractions
• inexact numbers: #i0.123, #i0, … // floating point numbers
 Operations: +, -, *, /, expt, remainder
 Scheme computes exact answers on exact inputs when possible
booleans: false, true
 Operations: not, and, or, …
Symbols: ‘A, ‘a, ‘Aa, ‘Corky, …
 Operations: … // none important for now
Other basic types: strings, vectors , … // none important for now

COMP 211, Spring 2009 5

Mixed-type Operations and Primitive Computation

• Basic relational operators
• equal? // all data values
• =, <, >, <=, >= // only on numbers

• Primitive computation = application of a basic operation to constants
• Basic operation = basic function
• Soon, we will see how to define our own (non-primitive) functions

• Function application in Scheme: parenthesized prefix notation
• Scheme uses parenthesized prefix notation uniformly for everything
• (+ 2 2), (sqrt 25), (remainder 7 3)

• Bigger example: (* (+ 1 2) (+ 3 4))
• How does this compare to writing 1+2*3+4 ?

• Scheme syntax is simple, uniform, and avoids possible ambiguity

COMP 211, Spring 2009 6

Computation is repeated reduction
• Every Scheme program execution is the evaluation of a

given expression constructed from primitive or defined
functions and variables (constants).

• Evaluation proceeds by repeatedly performing the leftmost
possible reduction (simplification) until the resulting
expression is a value.

• A value is any constant. We will identify all of the
expressions that are values as we explicate the language.
Numbers, booleans, symbols are all values.

COMP 211, Spring 2009 7

Reduction for primitive functions
• A reduction is an atomic computational step that replaces

some expression by a simpler expression as specified by a
Scheme evaluation rule (law). Every application of a basic
operation to values yields a value (where run-time error is
a special kind of value).

• Example
(* (+ 1 2) (+ 3 4))

=> (reduces to) (* 3 (+ 3 4))
=> (* 3 7) => 21

• Always perform leftmost reduction
• The following is not an atomic step, and so not a reduction

(- (+ 1 3) (+ 1 3)) = 0

COMP 211, Spring 2009 8

Programs = Variable Definitions + Function Definitions

• Variables are simply names for values
• pi, my-SSN, album-name, tax-rate, x

• Variable definitions
• (define freezing 32)
• (define boiling 212)

• Function definitions
• (define (area-of-box x) (* x x))
• (define (half x) (/ x 2))

• Function applications (just as we saw before)
• (area-of-box 2)
• (half (area-of-box 3))

• Almost any function f used in a program can be written in the form
• (define (f v1 … vn) <expression>)

 where <expression> is constructed from constants, variables,
function applications, and a few other constructs TBN.

COMP 211, Spring 2009 9

Reductions for defined functions
• Assume we declared the two functions

• (define (area-of-box x) (* x x))
• (define (half x) (/ x 2))

• Then Scheme can perform these reductions
(half (area-of-box 3)) ←

=> (half (* 3 3))
=> (half 9) ←
=> (/ 9 2)
=> 4.5

• Reduction stops when we get to a value or an error

COMP 211, Spring 2009 10

The Design Recipe
How should I go about writing programs?
1. Analyze problem and define any requisite data types
2. State contract (type) and purpose for function that solves

the problem
3. Give examples of function use and result
4. Select a template for the function body
5. Write the function itself
6. Test it, and confirm that tests succeeded

The order of the steps of the recipe is important

COMP 211, Spring 2009 11

Example: Area of ring
 ;; Contract: area-of-ring : number number -> number Step 2
 ;; Purpose: To compute the area of a ring whose radius is
 ;; outer and whose hole has a radius of inner
 ;; Examples: (area-of-ring 5 3) should produce 50.24 Step 3
 ;; (area-of-ring 5 0) should produce 78.5
 ;; Definition: [refines steps 1-4] Step 4
 (define (area-of-ring outer inner)
 (- (area-of-disk outer)
 (area-of-disk inner)))
 ;; Tests: Step 5
 “Testing area-of-ring:” ;; Help your grader :)
 (check-expect (area-of-ring 5 3) 50.24) ; reports error if not equal
 (check-expect (area-of-ring 5 0) 78.5)
 ;; … and other examples

Note: Donʼt use equal? or strings in Definition yet! Use it only in Tests .

COMP 211, Spring 2009 12

The Design Recipe (Big Picture)
• Encourages systematic problem solving
• Works best if keep our functions small
• We will learn how to repeatedly decompose

problems into simpler problems until we
reach problems that can be solved by simple
expressions like we for area-of-ring

• Decomposition driven by structure of data
being processed: data-directed design

COMP 211, Spring 2009 13

Syntax Errors
• A syntactically correct expression can be

• An atomic expression, like
• a number 17, 4.5, #i0.34
• a variable radius

• A compound expression,
• starting with (
• followed by basic or program-defined operation such as + or f
• one or more expressions separated by spaces
• ending with)

• Syntax errors:
• 3) , (3 + 4) , (+ 3 ,)+(, …

COMP 211, Spring 2009 14

Runtime Errors
• Happen when basic operations are applied with

manifestly illegal arguments
• Consider the following examples:

• (sqrt 1 2 3 4) ;; syntax error
• (18 17) ;; syntax error
• (/ 1 0) ;; runtime error
• (+ 1 “a”) ;; runtime error

• Try things like that in DrScheme, and make a
mental note of the error messages you get back.

COMP 211, Spring 2009 15

Simple Data Definitions
• How do we define new forms of data in Scheme? For example, say we

want to write a program for the registrar that maintains a directory of
courses that can be searched …

• Problem description
• “… Each university course will have an associated department and course

numbers, as well as a class size. ...
• Data definition

;; A course is a structure (make-course dept num size)
;; where dept is a symbol, and num and size are numbers
(define-struct course (dept num size))

• Scheme processes this definition by creating the following operations:
• constructor: make-course,
• accessors: course-dept, course-num, course-size
• recognizer: course?

COMP 211, Spring 2009 16

Creating and Using Structures
• Syntax for creating a structure:

 (define this-class (make-course ’COMP 211 41))
• A structure (a constructor applied to values) is a value (and hence is

not reducible)
• Itʼs big. But itʼs just like 1, true, or ‘Rabbit
• Itʼs big. But it is NOT a reducible expression, like (+ 1 2)

• Syntax for extracting fields
• (course-dept this-class)

(course-num this-class)

• Reduction for field access
 (course-dept (make-course ’COMP 210 50))
⇒ ’COMP

• Notes:
• (make-course ’COMP 210 50) is a value
• (make-course ’COMP 210 size) is not a value (why not?)
• (make-course ’COMP 210 (+ 25 25)) is not a value (why not?)

COMP 211, Spring 2009 17

Reminders
• New homework (HW1) is posted online

• Due next Wednesday, so you will get to check it over in
lab; donʼt wait until your lab to get started.

• Sign up for mailing list to get any updates, discussions
• Make absolutely sure you follow the recipe in writing

Scheme programs.
• Partners: Talk to people after class, at lab, etc.
• Follow format of examples posted on the wiki in

writing hand evaluations.
• Submit your assignment using svn (the command line

name for subversion)

COMP 211, Spring 2009 18

Next Lecture
• Continue digesting chs. 1-10 in HTDP

• Next class
• Inductive data definitions
• Conditionals
• Amplified design recipe

