
 1

Scheme Primitives and Function Definitions

Prof. Robert “Corky” Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2010 2

Course Overview

• Functional program design in Scheme
• Data-directed (functional) program design 2-10
• Algorithm design 11-14
• Applied functional programming 15-17

• Object-oriented (OO) program design in Java
18-45

• …

COMP 211, Spring 2010 3

Today’s Goals
• Common basic types
• Common primitive operations
• Rules for reducing programs
• Simple programs =
 Variable definitions (Constants)

+ Function definitions
• The design recipe
• Errors
• Data definitions

COMP 211, Spring 2010 4

Basic (primitive) types of data
numbers:
• naturals: 0, 1, 2, … // number theory
• integers: …, -1, 0, 1, … // include negatives
• rational numbers: 3/4, 0, -1/3, … // include fractions
• inexact numbers: #i0.123, #i0, … // floating point numbers

 Operations: +, -, *, /, expt, remainder
 Scheme computes exact answers on exact inputs if possible
booleans: false, true
 Operations: not, and, or, …
Symbols: ‘A, ‘a, ‘Aa, ‘Corky, …
 Operations: … // none important for now
Other basic types: strings, lists , … // none important for now

COMP 211, Spring 2010 5

Mixed-type Operations and Primitive
Computation

• Basic relational operators
• equal? // all data values
• =, <, >, <=, >= // only on numbers

• Primitive computation ≡ application of a basic operation to
constants

• Basic operation ≡ basic function
• Soon, we will see how to define our own (non-primitive) functions

• Function application in Scheme: parenthesized prefix notation
• Scheme uses parenthesized prefix notation uniformly for

everything
• (+ 2 2), (sqrt 25), (remainder 7 3)
• Bigger example: (* (+ 1 2) (+ 3 4))
• How does this compare to writing 1+2*3+4 ?

• Scheme syntax is simple, uniform, and avoids possible
ambiguity

COMP 211, Spring 2010 6

Computation is repeated reduction

• Every Scheme program execution is the
evaluation of a given expression constructed
from primitive or defined functions and variables
(names for constants).

• Evaluation proceeds by repeatedly performing
the leftmost possible reduction (simplification)
until the resulting expression is a value.

• A value is any constant. We will identify all of
the expressions that are values as we explicate
the language. Numbers, booleans, symbols are
all values.

COMP 211, Spring 2010 7

Reduction for primitive functions
• A reduction is an atomic computational step that

replaces some expression by a simpler expression as
specified by a Scheme evaluation rule (law). Every
application of a basic operation to values yields a
value (where run-time error is a special kind of
value).

• Example
(* (+ 1 2) (+ 3 4))
=> (reduces to) (* 3 (+ 3 4))

=> (* 3 7) => 21
• Always perform leftmost reduction
• The following is not an atomic step, and so not a

reduction
(- (+ 1 3) (+ 1 3))  0

COMP 211, Spring 2010 8

Programs =
Variable Definitions + Function Definitions

• Variables are simply names for values
• pi, my-SSN, album-name, tax-rate, x

• Variable definitions
• (define freezing 32)
• (define boiling 212)

• Function definitions
• (define (area-of-box x) (* x x))
• (define (half x) (/ x 2))

• Function applications (just as we saw before)
• (area-of-box 2)
• (half (area-of-box 3))

• Almost any function f used in a program can be written in the
form

• (define (f v1 … vn) <expression>)

 where <expression> is constructed from constants, variables,
function applications, and a few other constructs TBN.

COMP 211, Spring 2010 9

Reductions for defined
functions
• Assume we have declared the two functions

• (define (area-of-box x) (* x x))
• (define (half x) (/ x 2))

• Then Scheme can perform these reductions
(half (area-of-box 3))

=>(half (* 3 3))
=>(half 9)
=>(/ 9 2)
=>4.5

• Reduction stops when we get to a value or an
error

COMP 211, Spring 2010 10

 Example: Solve quadratic equation
 ;; Contract solve-quadratic: number number number -> number Step 2
 ;; Purpose: (solve-quadratic a b c) finds the larger root of

 a*x*x + b*x + c = 0 given it has real roots and a != 0

 ;; Examples: (solve-quadratic 1 0 -25) = 5 Step 3
 ;; (solve-quadratic 5 0 -20) = 2
 ;; (solve-quadratic 1 -10 25) = -4
 ;; . . . and other examples

 ;; Template instantiation: (degenerate) Step 4
 ;; (define (solve-quadratic a b c) ...)

 ;; Code Step 5
 ;; (define (solve-quadratic a b c)
 ;; (/ (+ (- b) (sqrt (- (* b b) (* 4 a c)))) (* 2 a)))

 ;; Tests for solve-quadratic Step 6
 ;; (check-expect exp ans) reports error if exp != ans
 (check-expect (solve-quadratic 1 0 -25) 5)
 (check-expect (solve-quadratic 5 0 -20) 2)
 (check-expect (solve-quadratic 1 -10 25) -4)

COMP 211, Spring 2010 11

Syntax Errors
• A syntactically correct expression can be

• An atomic expression, like
• a number 17, 4.5, #i0.34
• a variable radius

• A compound expression,
• starting with (
• followed by basic or program-defined operation such as
+ or f

• one or more expressions separated by spaces
• ending with)

• Syntax errors: 3 + 4 +(3,4) 3) (5

COMP 211, Spring 2010 12

Runtime Errors
• Happen when basic operations are applied to

illegal arguments
• Consider the following examples:

• (sqrt 1 2 3 4) => error: sqrt applied to more than one argument
• (18 17) => error: 18 applied as function ;;
• (/ 1 0) => error: division by zero
• (+ 1 ‘a) => error: second argument in application of + is not a number

• If a reduction produces an error, the
computation is aborted and the error is returned
as the result.

• Try things like that in DrScheme, and make a
mental note of the error messages you get
back.

COMP 211, Spring 2010 13

Conditional Expressions
• An expression that distinguishes different forms of data
• Form:
 (cond [question-1 result-1]
 [question-2 result-2]
 ...
 [question-n result-n]
 [else default-result])

• Square brackets are used above for clarity. In Scheme, they
are synonymous with parentheses, but balancing brackets
must match.

• else is optional. If omitted and none of the questions are
true, the result is a run-time error (like division by zero).

COMP 211, Spring 2010 14

 Reduction of Conditional Expressions
 (cond [true result-1]
 [... …])
=> result-1

 (cond [false result-1]
 [question-2 result-2]
 ...
 [else default-result])
=> (cond [question-2 result-2]
 ...
 [else default-result])

 (cond [else default-result])
=> default-result

COMP 211, Spring 2010 15

 Conditional Expression Examples

 (cond [(> 12 0) 5] [else -5])
=> (cond [true 5] [else -5])
=> 5

Given
 (define (abs x)
 (cond [(>= x 0) x]
 [else (- x)]))

 (abs -10)
 => (cond [(>= -10 0) -10] [else (- -10)])
 => (cond [false -10] [else (- -10)])
 => (- -10) => 10

COMP 211, Spring 2010 16

The Design Recipe
How should I go about writing programs?
1. Analyze problem and define any requisite data

types.
2. State contract (type) and purpose for function

that solves the problem.
3. Give examples of function use and result.
4. Select and instantiate a template for the

function body.
5. Write the function itself.
6. Test it, and confirm that tests succeeded.

The order of the steps of the recipe is important

COMP 211, Spring 2010 17

The Design Recipe (Big Picture)

• Encourages systematic problem solving
• Works best if keep our functions small
• We will learn how to repeatedly decompose

problems into simpler problems until we
reach problems that can be solved by simple
expressions as in solve-quadratic

• Decomposition driven by structure of data
being processed: data-directed design

COMP 211, Spring 2010 18

Reminders
• New homework (HW1) is posted online

• Due next Friday, so you will get to check it over in lab;
don’t wait until your lab to get started.

• Sign up for mailing list to get any updates, discussions
• Make absolutely sure you follow the recipe in writing

Scheme programs.
• Partners: Talk to people after class, at lab, etc.
• For Scheme programs, follow format of the sample

solution in the Scheme HW Guide.
• For hand evaluations, follow the format of the hand

evaluation problems posted in the Scheme HW Guide.
• Submit your assignment using Owlspace.

COMP 211, Spring 2010 19

Epilog
• Reminder: continue digesting chs. 1-10 in HTDP

Section 8.3 is particularly important and it is not
wordy.

• Next class
• Inductive Data definitions
• Amplified design recipe

• Challenge problem: What happens if we use rightmost reduction
instead of leftmost? Can you devise a program using the Scheme
subset given in this lecture such that some invocation of that
program (expression composed from constants and and basic and
program-defined operations defined in the program) behaves
differently (either in terms the result produced by the
computation or lack thereof) under rightmost evaluation than
leftmost evaluation. Hint: focus on pathological behavior and
note that two different errors are not equivalent.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

