
1

Static Class Members and Singletons

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

DrJava Intermediate Level
• Today we progress to the Intermediate Language Level. Beware of the

fact that compilation conventions are incompatible. If you generate a
test class with the langauge level set at Elementary, it will not compile
if you save it as an Intermediate language (.dj1) file.

• At the Intermediate level, the static, public, and private attributes
are enabled. The JUnit framework requires that test classes be public
for no good reason. The DrJava Elementary Level prohibits the
static, public, and private attributes in source text, but it generates
the public attribute for test classes. The Intermediate level does not
generate the public attribute for test classes, but includes it in the
provided template.

• The Elementary and Intermediate levels make the same distinction
with regard to import statements. import is prohibited and generated
for unit tests at the Elementary level but enabled and not generated at
the Intermediate level.

COMP 211, Spring 2009 3

static Class Members
• Almost all of the fields and methods that we have seen thus far have

been attached to Java classes, but fields and methods can be attached to
Java classes rather than class instances. Such fields and methods and
called static class members.

• We will defer discussing static methods. They are not supported at
the Intermediate Level in DrJava. Starting with HW8, set your
language level at Intermediate.

• static fields are used primarily to store constants associated with a
class. Why static? Only need one copy of a constant. Wasteful to
create a copy in every object of a class. You have already seen a few
static fields in the context of Java libraries. The fields MAX_VALUE
and MIN_VALUE in all of the wrapper classes except Boolean are static.

COMP 211, Spring 2009 4

private Class Members
• Any static or dynamic (instance) field or method can be marked as

private. A private field is visible only within the class in which it is
defined. We use private much like Scheme local but confining a
variable's scope to a class is much less restrictive that confining it to a
function/method. We can test defer discussing static methods as we
demonstrate once we introduce inner classes.

• private members are used primarily for methods and fields that only
concern the class containing them, e.g. help methods. Note that in the
context of the composite pattern, we cannot make a help method
private.

COMP 211, Spring 2009 5

The Singleton Pattern
• An important application of the static and private

attributes is the singleton pattern. Each execution of the
expression

new EmptyIntList()
creates a new object. In principle, there is only one empty
list, just like there is only one number 0. Hence, we would
like to represent the empty list by a single library.

• The singleton pattern is the mechanism that we use to
create a unique instance of a class. This pattern consists of
two chunks of code:

• a static field in the class that holds the single instance of the
class

• a private attribute on the class constructor, so no client can create
another instance of the class.

COMP 211, Spring 2009 6

Singleton IntList
• abstract class IntList {
• abstract IntList sort();
• IntList cons(int n) { return new ConsIntList(n, this); }
• abstract IntList insert(int n);
• }

• class EmptyIntList extends IntList {
• static EmptyIntList ONLY = new EmptyIntList();
• private EmptyIntList() { }
• IntList sort() { return this; }
• IntList insert(int n) { return cons(n); }
• }

• class ConsIntList extends IntList {
• int first;
• IntList rest;
• IntList sort() { return rest.sort().insert(first); }
• IntList insert(int n) {
• if (n <= first) return cons(n);
• else return rest.insert(n).cons(first);
• }
• }

Static member holding the unique instance

Private constructor

COMP 211, Spring 2009 7

For Next Class
• Labs this afternoon and tomorrow
• Easy Homework due Friday
• Reading: OO Design Notes, Ch 1.6-1.8.

