
1

Loose Ends and First-class Functions

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Loose Ends: DrJava LL Bug
• In some cases, it does not erase old .java and .class files

when compiling. Solution: delete these files using (in
Linux or Mac OS X):

/bin/rm *.java *.class

in the directory where your files are stored.

COMP 211, Spring 2009 3

Loose Ends: Exceptions
• In Java, error values are called exceptions. Exceptions are

conventional objects and hence are created by expressions of the form
 new <exception-class>(<arg1>, ..., <argn>).

• The Java libraries include on the order of 100 different exception
classes signifying different forms of error. The all inherit from the
class Exception. Moreover, the most useful and convenient form of
exception is a subclass of Exception called RuntimeException. All
of the exceptions that we will use will belong to type (subclasses of)
RuntimeException except some choices already dictated in the
libraries.

• Some of the important exception classes are:

NullPointerException
ClassCastException
IllegalArgumentException
java.util.NoSuchArgumentException

COMP 211, Spring 2009 4

Loose Ends: Exceptions cont.
• To explicitly raise an exception in Java code, you simply throw it

using the syntax
 throw <except-expr>
where <except-expr> is a an expression (typically a new
expression) denoting an exception.

• Examples:
throw new IllegalArgumentException("max applied to an empty list")
throw new java.util.NoSuchElementException("max applied to an empty
list")

COMP 211, Spring 2009 5

Loose Ends: Casts
• The Java static type system uses simple rules to infer types for Java

expressions.
• The inferred type for an expression is conservative; it is guaranteed to

be correct, but it may be weaker than what is required for a particular
computation. As a result, Java supports type coercions called casts of
the form
(<type>) <expr>
that simply converts the type of <expr> to <type> for type-checking
purposes. If the value of <expr> does not have type <type>, the
computation throws a ClassCastException. The type information
from a cast is purely local, it does not affect the inferred type of
subsequent occurrences of <expr> . As a result, Java code must
repeatedly cast such expressions to narrower type or introduce a new
variable of the narrower type bound to the value of <expr>.
Example: recall the merge method on ComparableList for today's
homework (HW7) written using the conventional Scheme solution.

COMP 211, Spring 2009 6

merge Example
abstract class ComparableList {
 ComparableList cons(Comparable n) { return new ConsComparableList(n, this); }
 abstract ComparableList merge(ComparableList other);
}

class EmptyComparableList extends ComparableList {
 static EmptyComparableList ONLY = new EmptyComparableList();
 private EmptyComparableList() { }
 ComparableList merge(ComparableList other) { return other;}
}

class ConsComparableList extends ComparableList {
 Comparable first;
 ComparableList rest;
 ComparableList insert(ComparableList other) {
 if (other == EmptyComparableList.ONLY) return this;

ConsComparableList o = ((ConsComparableList) other;
 if (first < o.first()) return rest.merge(o).cons(first);
 return merge(o.rest()).cons(o.first());
 }
}

COMP 211, Spring 2009 7

 Casting: A Final Comment
• The Java compiler disallows casts

 (<type>) <expr>
where <type> is an object (reference) type
and the static type of <expr> and <type> do
not overlap (ignoring null).

COMP 211, Spring 2009 8

Encoding First-class Functions in Java

• Java methods are not data values; they
cannot be used as values.

• But java classes include methods so we can
pass methods (functions) by passing an
appropriate class implementing an interface
type that is designed exclusively to
represent Java functions.

• Example: Scheme map

COMP 211, Spring 2009 9

Interfaces for Representing Functions
• For accurate typing, we need different interfaces for

different arities. With generics, we can define
parameterized interfaces for each arity. For now, we will
have to define separate interfaces for each desired typing.

map example:

interface UnaryFun {
 Object apply(Object arg); // Object -> Object
 }

 abstract class ObjectList {
 ObjectList cons(Object n) { return new ConsObjectList(n, this); }
 abstract ObjectList map(UnaryFun f);
 }
 ...

COMP 211, Spring 2009 10

 Representing Specific Funcions
• For each function that we want to use a value, we must define a class,

preferably a singleton. Since the class has no fields, all instances are
effectively identical.

• Defining a class seems unduly heavyweight, but it works in principle.
• Java provides a lightweight notation for singleton classes called

anonymous classes. Moreover these classes can refer to fields and
final method variables that are in scope. In DrJava language levels,
all variables are final. final fields and variables cannot be rebound
to a new value after they are initially defined (immutable). final
methods cannot be overridden.

• Anonymous class notation:

new <type>() {
 <member1>
 ...
 <membern>
}

COMP 211, Spring 2009 11

Anonymous Class Example

new UnaryFun() {
 Object apply(Object arg) {
 return EmptyObjectList.ONLY.cons(arg);
 }
}

 There are pending proposals to provide better
notation for lambda abstractions.

COMP 211, Spring 2009 12

For Next Class
• Spring Break next week.
• New Homework due Friday, March 13. Note that

the homework incidentally itivs char as a primitive
type. char constants are enclosed in single quote
marks (the single quote is on the same key as the
usual double quotation mark, between the
colon/semicolon key and return. Some examples
are: 'a' 'b' 'c' '1'

• Reading: OO Design Notes, Ch 1.9.

