
 1

 Generics with Discretion

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2010
 2

 How Generics Work

• The implementation of generics is smoke. The Java compiler (javac)
understands the typing rules which are based on the idea that each
instantiation of a generic class (e.g., List<Integer>,
List<Number>, List<Integer>) is a disjoint type and enforces
the appropriate typing rules based on this conceptual model. But the
Java compiler implements generic types by erasing the parametric
type information and automatically inserting casts where necessary. In
a type-correct program (one that does not violate any typing rule and
hence generates no errors or warnings), these casts can never fail.

• Note that subtyping is not co-variant: A <: (is a subtype of) B> ! 
List<A> <: List . Co-variant subtyping does not hold because
object fields can be mutated. If I can change the elements embedded
in a composite object consistent with the declared type of the
composite object, I cannot soundly treat a List<Integer> as a
List<Object>. These restrictions on generics are determined by the
mathematics of type parameterization not the vagaries of Java.

COMP 211, Spring 2010
 3

Aside: Accommodating Co-variance

• Co-variant subtyping is mathematically feasible but it requires much more
stringent type-checking rules, which make it unacceptable in most
situations. Some languages like Scala allow the programmer the option of
specifying that a particular generic type is co-variant. Java uses a
different approach called wildcards to accommodating occasional co-
variance.

• The theory of wildcard types is nearly non-existent. The developers of
Java 5.0 decided wildcards were so useful that they should be included in
Java despite the fact that the research literature (at the time of Java 5.0's
beta release) only included one fragmentary paper (published in a
workshop) that discussed wildcard types and a few others that talked
about similar but technically different type systems. Unfortunately, the
wildcard design in Java 5.0/6.0 is flawed. My recommendation: use only
simple forms of wildcards and use them only when there is no other
equally good way to produce type-correct code.

COMP 211, Spring 2010
 4

 Raw Types

The Java type system refers to the erased form of generic types as raw types.
 Raw types can be used in program text when integrating generic and non-
generic code and when working around restrictions in generic type system
imposed by erasure, but their usage should be minimized. Most usages of
raw types constitute a breach of the Java generic type system. A program
that uses raw types is likely to generate type warnings. A raw type C is nearly
(but not) exactly the same as the wildcard type C<?>.

No further discussion of raw types in this course. Raw types should not be
necessary in any code written in this course.

COMP 211, Spring 2010
 5

 Recommendations on Using Generics

• Ideally suited for parameterizing the types of classes that
represent program data objects (including closures).

• Do not hesitate to use generics for clarifying the typing of
data classes (and hence avoiding explicit casts).

• If a program generates a plethora of warnings, something is
wrong. In general warnings should be avoided; they
correspond to breaches in the type system and very likely
correspond to semantic (run-time) type errors. Every
warning message should be justified by a program comment.

• Remember that generics are supposed to serve the
programmer, not vice versa

COMP 211, Spring 2010
 6

 For Next Class
• Homework due on Friday. It consists of doing HW6 in Java

given a Scheme solution.
• DrJava bugs. Most anonymous classes defined in the

Interactions Pane currently fail. We are working on this
problem. As a workaround, define the anonymous inner
class in the Definitions Pane.

• Since the JVM does not perform tail optimization and also
supports multiple threads (each of which requires a call
stack), some viable computations will overflow the stack.
You can force the JVM to allocate larger per-thread call
stacks by editing DrJava preferences and typing
-Xss64M
in the dialog box labeled JVM args for Interactions JVM in the
Miscellaneous panel of DrJava Preferences.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

