
1

Generics with Discretion and the Command Line

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

How Generics Work
• The implementation of generics is smoke. The Java compiler (javac)

understands the typing rules which are based on the idea that each
instantiation of a generic class (e.g., List<Integer>, List<Number>,
List<Object>) is a disjoint type and enforces the appropriate typing rules
based on this conceptual model. But the Java compiler implements generic
types by erasing the parametric type information and automatically inserting
casts where necessary. In a type-correct program (one that does not violate
any typing rule and hence generates no errors or warnings), these casts can
never fail.

• Note that subtyping is not co-variant: A <: (is a subtype of) B> !⇒
List<A> <: List . Co-variant subtyping does not hold because of
object mutation. If I can change the elements embedded in a composite object
consistent with the declared type of the composite object, I cannot soundly
treat a List<Integer> as a List<Object>. These restrictions on generics
are determined by the mathematics of type parameterization not the vagaries
of Java.

COMP 211, Spring 2009 3

Aside: Accommodating Co-variance
• Co-variant subtyping is mathematically feasible but it requires much more

stringent type-checking rules, which make it unacceptable in most situations.
Some language like Scala allow the programmer the option of specifying that
a particular generic type is co-variant. Java uses a different approach called
wildcards to accommodating occasional co-variance.

• The theory of wildcard types is nearly non-existent. The developers of Java
5.0 decided wildcards were so useful that they should be included in Java
despite the fact that the research literature (at the time of Java 5.0's beta
release) only included one fragmentary paper (published in a workshop) that
discussed wildcard types (and a few others that talked about similar but
technically different type systems). Unfortunately, the design in Java 5.0/6.0
is flawed. My recommendation: use only simple forms of wildcards and use
them only when there is no other equally good way to produce type-correct
code.

COMP 211, Spring 2009 4

Raw Types

• The Java type system refers to the erased form of
generic types as raw types. Raw types can be used
in program text when integrating generic and non-
generic code and when working around restrictions
in generic type system imposed by erasure, but their
usage should be minimized. Most usages of raw
types constitute a breach of the Java generic type
system. A program that uses raw types is likely to
generate type warnings.

• No further discussion of raw types in this course.

COMP 211, Spring 2009 5

Recommendations on Using Generics

• Ideally suited for parameterizing the types of classes that
represent program data objects (including closures).

• Do not hesitate to use generics for clarifying the typing of
data classes (and hence avoiding explicit casts).

• If a program generates a plethora of warnings, something is
wrong. In general warnings should be avoided; they
correspond to breaches in the type system and very likely
correspond to semantic (run-time) type errors. Every warning
message should be justified by a program comment.

• Remember that generics are supposed to serve the
programmer, not vice versa

COMP 211, Spring 2009 6

For Next Class
• Homework due on Friday. It consists of doing HW6 in Java given a

Scheme solution.
• Language Levels bugs. External (file-crossing) references still are not

resolved in some cases. The Language Levels facility is not designed
to handle intermixed compilation involving .java files (.dj2 files
can be used instead). You can work around this bug by putting your
program (except for the test class) in a single class, including the
letters Test in your test file name, and separately compiling each file
starting with you main program file. If you use separate file-by-file
compilation, you can formulate your test file and perhaps your support
files as .java files.

• Big tests (like bigData) will probably require enlarging the stack of the
DrJava interactions JVM. Insert the argument string
-Xss64M
in the dialog box labeled JVM args for Interactions JVM in the
Miscellaneous panel of DrJava Preferences.

