
1

Mutation: Succumbing to the Dark Side?

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Motivation
• Four common problems:

• Assume that we are repeatedly evaluating a method/function m often evaluating m
on the same list of arguments. How can we avoid performing the same
computation more than once?

• Assume we want to compute the number of a nodes in a tree data structure where
nodes can be shared (the standard situation in functional programming or OO
programming with immutable data). How can we efficiently perform this
computation.

• Perhaps simplest data structure from the perspective of machine implementation is
the array: a fixed-size list of elements T that is allocated in contiguous machine
memory where each element T is represented by a fixed size chunk of memory.
The array was the only data structure in the original Fortran language. How can
we create such structures using simple machine operations? How can we
efficiently compute new ones?

• How can I represent cyclic linked structures (general graphs rather trees)?
• The best (and hence light rather dark) solutions to these four problems all rely

on mutation

COMP 211, Spring 2009 3

Mutation: Definition
• Mutation is rebinding a variable to a new value. What is a variable? A cell in

computer memory containing a value such as an int or a reference (address
of) to an Object. Rebinding that variable requires destroying the former
binding, replacing the contents of the memory cell (for the variable) with new
value.

• Mutation is nearly non-existent in mathematics. We don't change numbers or
functions; we simply construct new one. Why? From the perspective of
human thought, creating new values is much simpler. We don't have to
remember what changes have been made to any existing value and there is no
extra cost incurred in creating new mathmatical objects as opposed to
changing existing ones.

• In computation, the tradeoffs are different. Mutation has a large conceptual
overhead--we have remember exactly what has changed at any point in a
computation--but it also has huge efficiency and modeling advantages. The
efficiency advantage is that the cost of creating a new data structure (assuming
we can dispense with an existing one) is simply the cost of the changes
(differences) between the new structure and the old one.

COMP 211, Spring 2009 4

Modeling Involves Mutation
• In many computational models, objects in the model evolve

over time. Examples:
• Bank accounts
• Stock prices
• Enrollment in a college class
• Temperature in your dorm room

• Physical systems change over time, but the identities of the
objects in the system changes much less often that the
properties of those objects. Example: humanity. Every few
seconds, significant properties of almost every human being
change (location, heart rate, posture, etc.) but new human
beings are born infrequently (relative to changes in the status
of the existing population).

COMP 211, Spring 2009 5

Mutation Manifesto
• Execution recapitulates system evolution
• Given a physical system, it evolves in time. In most

computations, the natural way to model this evolution is to
simply update a data structure representing the state of the
system.

• What is the functional (immutable alternative)? Modeling
physical systems as functions mapping time to states. But this
is expensive (and in many cases conceptually exhausting)
because all history is explicitly retained in the computational
model.

COMP 211, Spring 2009 6

Example 1: Memo Functions

• Consider a naive program to compute the Fibonacci
function. How can we speed it up without any
mathematical reworking of the problem. Brute force
speed-up:

class MyMath {
 static long fib(int n) {
 if (n <= 1) return 1;
 else return fib(n-1) + fib(n-2);
 }
}

COMP 211, Spring 2009 7

Memo Functions cont.
• We can avoid recomputing fib(n) for a given value of n by maintaining a table

that records all previously computed values. We will use a HashMap for this
purpose although we could easily use an expandable array to represent the table
with less (constant factor) executiion overhead but more programming overhead

import java.util.HashMap;
class BetterMath {
 static HashMap<Integer, Long> Fib = new HashMap<Integer, Long>();
 static long fib(int n) {
 if (n <= 1) return 1;
 else {
 Long cachedAnswer = Fib.get(n);
 if (cachedAnswer != null) return cachedAnswer;
 else {
 long newAnswer = fib(n-1) + fib(n-2);
 Fib.put(n, newAnswer);
 return newAnswer;

 }
 }

}

COMP 211, Spring 2009 8

Example 2: Counting Tree Nodes

• Idea: we avoid counting a node more than once. How can
we do this? When we start to visit a node, abort the
visitation if node has "already been visited". How do we
determine if a node has "already been visited"?

• Add a boolean "flag" field to our node representation initialized to
false and mutate it to true when a node is visited.

• Requires changing the node representation.
• Boolean flags be cleared (requiring a tree traversal) before reuse.

• Add a static HashSet<Node> field to node class (or other
convenient class) that holds the set of nodes that have been visited.

• Less intrusive; node representation is unchanged.
• Slightly more overhead. How is HashSet implemented?

COMP 211, Spring 2009 9

Example 3: Initializing and Manipulating Arrays

• Can arrays be incorporated in a functional language? Yes
but they can only be used to hold immutable tables mapping
0 < i < n to some type T. How can we create them? We
need a primitive operation that takes two arguments n and
f:nat → T that specifies the value f(i) of the ith array
element.

• How can I initialize arrays without functions as data
(alternatively using simple machine operations)? By
allocating a block of memory (of proper size) and mutating
the elements in that block. Use a loop (a special form of tail
recursion):

for (int i = 0; 0 < n; i++) a[i] = <some expression in i>;

COMP 211, Spring 2009 10

Arrays cont.

• Good online language feature/syntax (but not style or
design!) reference:
http://leepoint.net/notes-java/

• Arrays are important if you need to squeeze the last possible
bit of overhead out of a computation. For example,
quicksort and insertion sort can be done more efficiently
(particularly quicksort) if lists are represented as arrays and
those arrays are mutated.

COMP 211, Spring 2009 11

Example 4: Cyclic Linked Structures

• Josephus Problem: naive simulation of cannibals killing
Christians arranged in a circle.

• Regular infinite trees or lists (analogous to repeating
decimals) are easily represented by lists extended to allow
back pointers. Example:
zeroes = cons(0, zeroes) (where cons is lazy [call-by-name])

• How can we implement zeroes? In R5RS Scheme:
(define zeroes (cons 0 empty))
(set-cdr! zeroes zeroes)

COMP 211, Spring 2009 12

For Next Class
• Homework due on Wednesday. Should have working

interpreter code by Saturday night.
• Big tests (like bigData) will be installed this afternoon.

The bigger ones will require enlarging the stack of the
DrJava interactions JVM. Insert the argument string
-Xss64M
in the dialog box labeled JVM args for Interactions JVM
in the Miscellaneous panel of DrJava Preferences.

