
1

 Mutation and Bi-Directional Linked Lists

Corky Cartwright

Vivek Sarkar

Department of Computer Science

Rice University

COMP 211, Spring 2010 2

Mutation: Succumbing to the
Dark Side? (Lecture 26)

• Four common problems in computing:
• Assume that we are repeatedly evaluating a method/function m often

evaluating m on the same list of arguments. How can we avoid performing
the same computation more than once?

• Assume we want to compute the number of a nodes in a tree data structure
where nodes can be shared (the standard situation in OO programming with
immutable data). How can we efficiently perform this computation?

• Perhaps the simplest data structure from the perspective of machine
implementation is the array: a fixed-size list of elements that is allocated in
contiguous machine memory where each element e is represented by a fixed
size chunk of memory. The array was the only data structure in the original
Fortran language. How can we create such structures using simple machine
operations? How can we efficiently compute new ones?

• How can I represent cyclic linked structures (general graphs rather trees)?
• The best solutions to these four problems all rely on data mutation.

COMP 211, Spring 2010 3

 Mutation: Definition
• Mutation is rebinding a variable to a new value. What is a variable? A

cell in computer memory containing a value such as an int or a
reference to (address of) an Object. Rebinding that variable destroys
the former binding, replacing the contents of the memory cell (for the
variable) with a new value.

• Mutation is nearly non-existent in mathematics. We don't change
numbers or functions; we simply construct new one. Why? From the
perspective of human thought, creating new values is much simpler.
We don't have to remember what changes have been made to any
existing value and there is no extra cost incurred in creating new
mathematical objects as opposed to changing existing ones.

• In computation, the trade-offs are different. Mutation has a large
conceptual overhead--we have remember exactly what has changed at
any point in a computation--but it also has huge efficiency and
modeling advantages. The efficiency advantage is that the cost of
creating a new data structure (assuming we can dispense with an
existing one) is simply the cost of the changes (differences) between
the new structure and the old one.

COMP 211, Spring 2010 4

 Modeling Involves Mutation
• In many computational models, objects in the model evolve

over time. Examples:
• Bank accounts
• Stock prices
• Enrollment (and roster) of a college class
• Temperature in your dorm room

• Physical systems change over time, but the identities of the
objects in the system change much less often that the
properties of those objects. Example: humanity. Every few
seconds, significant properties of almost every human being
change (location, heart rate, posture, etc.) but new human
beings are born infrequently (relative to changes in the status
of the existing population). Consider the human beings in this
room.

COMP 211, Spring 2010 5

 Mutation Manifesto
• Execution recapitulates system
evolution

• Given a physical system, it evolves in time. In
most computations, the natural way to model
this evolution is to simply update a data
structure representing the state of the system.

• What is the functional (immutable alternative)?
Modeling physical systems as functions
mapping time to states. But this is expensive
(and in many cases conceptually exhausting)
because all history is explicitly retained in the
computational model.

COMP 211, Spring 2010 6

 Example 1: Memo Functions

• Consider a naive program to compute the
Fibonacci function. How can we speed it up
without any mathematical reworking of the
problem. Brute force speed-up:
class MyMath {
 static long fib(int n) {
 if (n <= 1) return 1;
 else return fib(n-1) + fib(n-2);
 }
}

• Aside: what is static?

COMP 211, Spring 2010 7

Memo Functions cont.
• We can avoid recomputing fib(n) for a given value of n by

maintaining a table that records all previously computed values.
We will use a HashMap for this purpose although we could easily
use an expandable array to represent the table with less
(constant factor) executiion overhead but more programming
overhead

import java.util.HashMap;
class BetterMath {
 static HashMap<Integer, Long> Fib = new HashMap<Integer, Long>();
 static long fib(int n) {
 if (n <= 1) return 1;
 else {
 Long cachedAnswer = Fib.get(n);
 if (cachedAnswer != null) return cachedAnswer;
 else {
 long newAnswer = fib(n-1) + fib(n-2);
 Fib.put(n, newAnswer);
 return newAnswer;

 }
 }

}

COMP 211, Spring 2010 8

Example 2: Counting Tree Nodes

Idea: we avoid counting a node more than once. How can we
do this? When we start to visit a node, abort the visitation if
node has "already been visited". How do we determine if a
node has "already been visited"?
• Add a boolean "flag" field to our node representation initialized to false

and mutate it to true when a node is visited.
• Requires changing the node representation.
• Boolean flags be cleared (requiring a tree traversal) before reuse.

• Add a static HashSet<Node> field to node class (or other
convenient class) that holds the set of nodes that have been visited.
• Less intrusive; node representation is unchanged.
• Slightly more overhead. How is HashSet implemented?

COMP 211, Spring 2010 9

 Example 3: Initializing and Manipulating Arrays

• Can arrays be incorporated in a functional language? Yes but they
can only be used to hold immutable tables mapping 0 < i < n to
some type T. How can we create them? We need a primitive
array construction operation that takes two arguments n and a
function f mapping int to T that specifies the value f(i) of the
ith array element.

• How can we initialize arrays without using functions as data
(alternatively, only using simple machine operations)? By
allocating a block of memory (of proper size) and mutating the
elements in that block. Use a loop (a special form of tail recursion)
like the following:
 for (int i = 0; i < n; i++) a[i] = <some expression in i>;

COMP 211, Spring 2010 10

 Example 4: Cyclic Linked Structures

• Josephus Problem: naive simulation of cannibals killing
Christians arranged in a circle.

• Regular infinite trees or lists (analogous to repeating
decimals) are easily represented by lists extended to allow
back pointers. Example:
 zeroes = cons(0, zeroes) (where cons is lazy [call-by-name])

• How can we implement zeroes? In R5RS Scheme:
 (define zeroes (cons 0 empty))
 (set-cdr! zeroes zeroes)

COMP 211, Spring 2010 11

 Background on Lists

• Scheme lists and composite pattern lists in Java are internally
represented using a linked list of Cons nodes. Each Cons
node N is a chunk of memory containing a field first and a
field rest. In each node N, these fields are the addresses of:

• the object o that is the first element in the list rooted at N and
• the Cons node N' representing the rest of the list rooted at N'.

• In functional programming (Java programming with immutable
objects), these fields are never modified after they are
initialized. In imperative (mutable data) programming, they can
be modified.

• Mutation can be performed with discipline and taste. We will
focus initially on the mutable generalization of composite lists.

COMP 211, Spring 2010 12

 Mutable Generalization of Functional Lists

In Comp 212, we would introduce the notion of QuasiLists (LRS
structures in the terminology of Nguyen and Wong) which
make the first and rest fields of a Cons node mutable. See
the class notes on OO design.
• But QuasiLists provide no asymptotic speed-up over

functional lists. Inserting or removing elements from the
end of a list takes O(n) time.

• Traditional linked lists can provide asymptotic speed-ups.
• OO style dictates the disciplined use of mutation

• Never modify fields directly.
• Support high level mutation via mutating methods.

COMP 211, Spring 2010 13

 Example: BiLists

• In Comp 212, we would introduce mutable "singly linked lists" first.
Functional lists are singly linked and mutable singly linked lists are
lighter weight (simpler and, in many cases, faster) See the OO design
notes. Allowing mutation on singly linked lists asymptotically speeds-up
some operations on lists, but others (such as deleting the last element
of a list) take O(n) time in the absence of double-linking.

• Furthermore, representing nodes as objects adds weight (a two
machine word header in each node) to a linked-list implementation so
double-linking adds only modest extra space (one word) and time cost
(allocating and reclaiming more space takes more time).

• A doubly-linked representation adds a predecessor address field to each
Cons node.

COMP 211, Spring 2010 14

 Comments on BiList code

• Supports the iterator design pattern, which is
applicable to any data structure that holds a collection
of items.

• Key operations:
• Factory method (design pattern) for constructing an iterator
• Method for advancing the iterator cursor
• Method for getting the current item
• Method for testing whether cursor is at the end enumerating

the collection.

 Code: BiIterator from BiList.java (HW 10)

 private class BiIterator implements BiIteratorI<T> {
 Node<T> current;
 BiIterator() {
 current = BiList.this.head.succ; // current is first item (if one exists)
 }
 public void first() {
 current = BiList.this.head.succ; // current is first item (if one exists)
 }
 public void last() {
 current = BiList.this.head.pred; // current is last item (if one exists)
 }

 public void next() {
 current = current.succ; // wraps around end
 }

 public void prev() {
 current = current.pred; // wraps around end
 }
 public T currentItem() {
 if (current == BiList.this.head) {
 throw new IteratorException("No current element in " + BiList.this);
 }
 return current.item;
 }
 }COMP 211, Spring 2010 15

BiIterator class (cont.)

 public boolean atEnd() {

 return current == BiList.this.head;

 }

} // BiIterator

This is advanced Java code. Why? BiIterator is a private, inner class.

COMP 211, Spring 2010 16

	 Mutation and Bi-Directional Linked Lists
	Mutation: Succumbing to the Dark Side? (Lecture 26)
	Mutation: Definition
	Modeling Involves Mutation
	Mutation Manifesto
	Example 1: Memo Functions
	Memo Functions cont.
	Example 2: Counting Tree Nodes
	Example 3: Initializing and Manipulating Arrays
	Example 4: Cyclic Linked Structures
	 Background on Lists
	Pure Mutable Generalization of Functional Lists
	Example: BiLists
	Comments on BiList code
	Code Example: BiIterator class from BiList.java (HW 10)
	Code Example: BiIterator class from BiList.java (contd)

