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Mutation: Succumbing to the Dark 
Side? (Review Lecture 26)

• Four common problems in computing:
• Assume that we are repeatedly evaluating a method/function m often 

evaluating m on the same list of arguments.   How can we avoid performing 
the same computation more than once?

• Assume we want to compute the number of a nodes in a tree data structure 
where nodes can be shared (the standard situation in OO programming with 
immutable data).  How can we efficiently perform this computation?

• Perhaps the simplest data structure from the perspective of machine 
implementation is the array: a fixed-size list of elements that is allocated in 
contiguous machine memory where each element e is represented by a fixed 
size chunk of memory.   The array was the only data structure in the original 
Fortran language.   How can we create such structures using simple machine 
operations?  How can we efficiently compute new ones?

• How can I represent cyclic linked structures (general graphs rather trees)?
• The best solutions to these four problems all rely on data mutation.
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 Mutation: Definition
• Mutation is rebinding a variable to a new value.  What is a variable?  A cell in 

computer memory containing a value such as an int or an (address of an) 
Object.  Rebinding that variable destroys the former binding, replacing the 
contents of the memory cell (for the variable) with a new value.

• Mutation is nearly non-existent in mathematics.  We don't change numbers or 
functions; we simply construct new ones.  Why?  From the perspective of 
human thought, creating new values is much simpler.  We don't have to 
remember what changes have been made to existing values and there is no 
extra cost incurred in creating new mathematical objects as opposed to 
changing existing ones.

• In computation, the trade-offs are different.  Mutation may have a large 
conceptual overhead--we have remember exactly what has changed at any 
point in a computation--but it also has huge efficiency and modeling 
advantages.  The efficiency advantage is that the cost of creating a new data 
structure (assuming we can dispense with an existing one) is simply the cost of 
the changes (differences) between the new structure and the old one.
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 Modeling Involves Mutation
• In many computational models, objects in the model evolve over 

time.  Examples:
• Bank accounts
• Stock prices
• Enrollment (and roster) of a college class
• Temperature in your dorm room

• Physical systems change over time, but the identities of the 
objects in the system change much less often that the properties 
of those objects.  Example: humanity.  Every few seconds, 
significant properties of almost every human being change 
(location, heart rate, posture, etc.) but new human beings are 
born infrequently (relative to changes in the status of the 
existing population).   Consider the human beings in this room.
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 Mutation Manifesto
• Execution recapitulates system evolution
• Given a physical system, it evolves in time.  In 

most computations, the natural way to model this 
evolution is to simply update a data structure 
representing the state of the system.

• What is the functional (immutable alternative)? 
Modeling physical systems as functions mapping 
time to states.  But this is expensive (and in many 
cases conceptually exhausting) because all 
history is explicitly retained in the computational 
model.
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 Example 1: Memo Functions

• Consider a naive program to compute the 
Fibonacci function.  How can we speed it up 
without any mathematical reworking of the 
problem.  Brute force speed-up:

` class MyMath {
  static long fib(int n) {
    if (n <= 1) return 1;
    else return fib(n-1) + fib(n-2);
  }
}

• Aside: what is static?​
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Memo Functions cont.
We can avoid recomputing fib(n) for a given value of n by 
maintaining a table recording all previously computed values.  We will 
use a HashMap for this purpose although we could easily use an 
expandable array to represent the table with less (a constant factor) 
execution overhead but more programming effort
import java.util.HashMap;
class BetterMath {
  static HashMap<Integer, Long> Fib = new HashMap<Integer, Long>();
  static long fib(int n) {
    if (n <= 1) return 1;
    else {
      Long cachedAnswer = Fib.get(n);
      if (cachedAnswer != null) return cachedAnswer;
      else {
        long newAnswer = fib(n-1) + fib(n-2);
        Fib.put(n, newAnswer);
        return newAnswer;
      }
    }
  }
}
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Example 2: Counting Tree Nodes

Idea: we want to avoid counting a node more than once.  
How can we do this?  When we start to visit a node, abort the 
visitation if node has "already been visited".  How do we 
determine if a node has "already been visited"?
• Add a boolean "flag" field to our node representation initialized to false 

and mutate it to true when a node is visited.
• Requires changing the node representation.
• Boolean flags be cleared (requiring a tree traversal) before reuse.

• Add a static HashSet<Node> field to the Node class (or other 
convenient class) that holds the set of nodes that have been visited.
• Less intrusive; node representation is unchanged.
• Slightly more overhead.  How is HashSet implemented?
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 Example 3: Initializing and Manipulating Arrays

• Can arrays be incorporated in a functional language?  Yes but 
they can only be used to hold immutable tables mapping 0 < i < n 
to some type T.  How can we create them?  We need a primitive 
array construction operation that takes two arguments n and a 
function f mapping int to T that specifies the value f(i) of the 
ith array element.

• How can we initialize arrays without using functions as data 
(alternatively, only using simple machine operations)?  By 
allocating a block of memory (of proper size) and mutating the 
elements in that block.  Use a loop (a special form of tail recursion) 
like the following:

    for (int i = 0; i < n; i++) a[i] = <some expression in i>;

Recall that for expands into a while.
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 Example 4: Cyclic Linked Structures

• Josephus Problem: naive simulation of cannibals killing 
Christians arranged in a circle.

• Regular infinite trees or lists (analogous to repeating 
decimals) are easily represented by lists extended to allow 
back pointers.  Example:
  zeroes = cons(0, zeroes)  (where cons is lazy [call-by-name])

• How can we implement zeroes?  In R5RS Scheme:
  (define zeroes (cons 0 empty))
 (set-cdr! zeroes zeroes)
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 Background on Lists

• Scheme lists and composite pattern lists in Java are internally 
represented using a linked list of Cons nodes.  Each Cons 
node N is a chunk of memory containing a field first and a 
field rest.  In each node N, these fields are the addresses of:
• the object o that is the first element in the list rooted at N and

• the Cons node N' representing the rest of the list rooted at N'.
• In functional programming (Java programming with immutable 

objects), these fields are never modified after they are 
initialized. In imperative (mutable data) programming, they can 
be modified.

• Mutation can be performed with discipline and taste.  We will 
focus initially on the mutable generalization of composite lists.
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 Mutable Generalization of Functional Lists

In Comp 212, we would introduce the notion of QuasiLists 
(LRS structures in the terminology of Nguyen and Wong) 
which make the first and rest fields of a Cons node 
mutable.  See the class notes on OO design.
• But QuasiLists provide no asymptotic speed-up over 

functional lists.  Inserting or removing elements from the 
end of a list takes O(n) time.

• Traditional linked lists can provide asymptotic speed-
ups.  

• OO style dictates the disciplined use of mutation
• Never modify fields directly.
• Support high level mutation via mutating methods.
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 Example: BiLists

• In Comp 212, we would introduce mutable "singly linked lists" first.  
Functional lists are singly linked and mutable singly linked lists are 
lighter weight (simpler and, in many cases, faster than doubly linked 
lists).  See the OO design notes.  Allowing mutation on singly linked lists 
asymptotically speeds-up some operations on lists, but others (such as 
deleting the last element of a list) take O(n) time in the absence of 
double-linking.

• Furthermore, representing nodes as objects adds weight (a two 
machine word header in each node) to a linked-list implementation so 
double-linking adds only modest extra space (one word) and time cost 
(allocating and reclaiming more space takes more time).

• A doubly-linked representation adds a predecessor address field to 
each Cons node. 



COMP 211, Spring 2010 14

 Comments on BiList code

Supports the iterator design pattern, which is applicable 
to any data structure that holds a collection of items.  An 
iterator for a collection enables the elements to be 
processed as a sequence in some order.
• Key operations:

• Factory method (design pattern) for constructing an iterator
• Method for advancing the iterator cursor
• Method for getting the current item
• Method for testing whether cursor is at the end enumerating 

the collection.



BiIterator class from BiList.java
 private class BiIterator implements BiIteratorI<T> {
    Node<T> current;
    BiIterator() {
       current = BiList.this.head.succ;  // current is first item (if one exists)
    }
    public void first() {
       current = BiList.this.head.succ;  // current is first item (if one exists)
    }
    public void last() {
       current = BiList.this.head.pred;  // current is last item (if one exists)
    }
    public void next() {
         current = current.succ;         // wraps around end including header
    }
    public void prev() {
       current = current.pred;           // wraps around end including header
    }
    public T currentItem() {
       if (current == BiList.this.head) {
          throw new IteratorException("No current element in " + BiList.this);
       }
       return current.item;
    }
    public boolean atEnd() { return current == BiList.this.head; }
 }
COMP 211, Spring 2010 15



 BiIterator class commentary

BiIterator is an advanced Java class.  Why?
 It is an inner class.
 What is the difference between static and 

dynamic inner classes
 It is private
• It is generic.
 Why isn't it declared as BiIterator<T>?
What is the scope of a type parameter?
• It is private.
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