
1

Arrays as Bounded Sequences

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Motivation
• Computational models are built using a small number of

primitives (just like objects in mathematics), namely sequences
(contiguous and linked), trees, graphs (multi-linked structures),
and functions.

• Essentially the same data representations and operations on those
representations appear over and over again

• Libraries and frameworks catalog these repeated bodies of code.
• Unfortunately, the abstraction mechanisms in our programming

languages limit the reuse of cataloged code. Our
parameterization mechanisms are restrictive and add overhead.

COMP 211, Spring 2009 3

Arrays
• An array of T is a contiguous (as allocated in memory) sequence of data

values of type T . The length of the array is fixed at the time the array is
created. The type T can be a fixed-length primitive machine type (represented
by a fixed-length sequence of bytes) or a fixed length address. The key issue
is that the representation of T has a fixed size and hence the representation of
the array has a fixed size.

• The Java type for an array of T is written T[]. Arrays are a special form of
object. The array class cannot be extended, but arrays can be used anywhere
arbitrary objects can be used. When an array is allocated, the size of the array
is inserted between the square brackets: new int[17] . By default, the
elements of the array are initialized to the default value for the element type
(whatever the bit representation 0 means for that type).

• An alternate syntax for the new operation on arrays new int[] {0,1,2}
explicitly lists the initial contents of the array and leaves the length implicit.

COMP 211, Spring 2009 4

Arrays cont.
• To extract an element from an array a, we simply use the postfix operation

[index] where index is an integer expression with a value in the range [0, n)
For example,
 new int[] {0,1,2} [0] => 0
 new int[] {0,1,2} [1] => 1
 new int[] {0,1,2} [2] => ArrayIndexOutOfBoundsException

• To update an array, the index expression for accessing the element to be
update is used on the left-hand size of a conventional assignment statement:
 int[] a = new int[2];
 a[0] = 0;
 a[1] = 1;

• The meanings of equals and toString in array classes are the standard
Object defaults. Beware. equals means object identity and toString prints
L<eltType>@address, where eltType is a Java abbreviation for the element
type and address is the hashCode of the object expressed in hexadecimal.

COMP 211, Spring 2009 5

Arrays cont.
• The only interesting member of array classes is the field length. Beware:

object classes similar to array typically use a size() method instead.
• Since the array class cannot be extended and the default members of the class

provide little functionality beyond arrays in C, most Java programmers use
ArrayList (preferred) or Vector (archaic) instead. Arrays are lighter weight
than corresponding object classes and are the only first-class generic type in
Java, so they are important in practice. Moreover, computations on ArrayList
involve essentially the same models and tradeoffs as computations on arrays.

• To explain how to write clean code for processing arrays, we identify them with
lists and use some cleverness in representing the tails of arrays..

• It is straightforward to write tail-recursive code to perform array computations
from the perspective that arrays are restricted lists. But to produce good array
code in Java we must go one step farther and convert that tail-recursive code to
loop code.

COMP 211, Spring 2009 6

Recipes for Processing Arrays
• Conceptually arrays are a restricted form of list where:

• There is no rest() operation, but there is an indexed accessor operation (often
called get).

• Updates are destructive and can only be performed on elements not on tails.
• The array type overlooks the conceptual roots of arrays as lists, which have

an itype inductive definition. To recover these roots, we need to define
some conceptual operations on arrays

• Given an array A = {a0 , ..., an}, we define the slice A〈k,l〉 where 0 ≤ k ≤ l
≤ n as the sequence of elements ak, ..., al-1. We can pass a slice as an
argument using A, k, and l. If we fix k at zero or l at n, then we only need
pass A and and index i.

• We can write functions on arrays in essentially the same way as on lists if
we encode the results of rest operations using slices represented by the array
object and indices.

COMP 211, Spring 2009 7

Recipes for Processing Arrays cont.

• Assume that we want to sum the elements of an int[] array. We can express the naive
solution using structural recursion as follows:
class ArrayUtil {
 public static int sum(int[] a) { return sumHelp(a, 0); }
 /** sumHelp(a, i) sums a[i],..,a[a.length - 1] */
 public static int sumHelp(int[] a, int i) {
 if (i >= a.length) then return 0;
 else return a[i] + sumHelp(a, i+1);
 }
}
We introduced a help function because auxiliary arguments are required to describe list tails.

• We can improve this naïve program by converting it to tail-recursive form:
class ArrayUtil {
 public static int sum(int[] a) { return sumHelp(a, 0, 0); }
 /** Returns the sum of A[0],…,A[a.length-1] given 0 <= i < a.length
 and accum = A[0],…A[i-1] */
 public static int sumHelp(int[] a, int i, int accum) {
 if (i >= a.length) return accum;
 else return sumHelp(a, i+1, a[i] + accum);
 }
}

COMP 211, Spring 2009 8

Tail Recursion Is Not Enough!

• Java does not generally optimize tail calls (it is
implementation dependent and unsupported in Sun
JVMs which means you cannot rely on tail
recursion.) In my opinion, this was a grievous error
in the definition of Java (an opinion shared by Guy
Steele who wrote the original edition of the JLS).

• Implication: must use Java loops instead of tail
recursive help functions to get good performance and
memory utilization.

COMP 211, Spring 2009 9

Connection between Loops and Tail Recursion

• What is a while loop? The code
 while (test) update
evaluates the boolean expression test and falls through to the next
statement if test is false. Otherwise, it evaluates update and executes the
loop again.

• If we model mutations in the code containing the while loop as changes to
fields of the enclosing object, then the while loop is equivalent to calling a
method
void whileFun() {
if (! test) return;
else {
 update;
 whileFun();
}

• Note that this function template is simply a restricted form of tail
recursion. Let's convert our sum function to while loop form. The state will
be the pair of variables (i, accum) formulated as parameters in the tail
recursive code.

COMP 211, Spring 2009 10

Loops and Tail Recursion
• Given

 class ArrayUtil {
 public static int sum(int[] a) { return sumHelp(a, 0, 0); }
 /** Returns the sum of A[0],…,A[a.length-1] given 0 <= i < a.length
 and accum = A[0],…A[i-1] */
 public static int sumHelp(int[] a, int i, int accum) {
 if (i >= a.length) return accum;
 else return sumHelp(a, i+1, a[i] + accum); /* update i, accum */
 }
}

• The same code in loop form (no recursion):
 class ArrayUtil {
 public static int sum(int[] a) {
 /** Returns the sum of A[0],…,A[a.length-1] */
 accum = 0; i = 0; /* bind parms i, accum */
 /* Invariant: accum = a[0] + … + a[I-1] */
 while (i < a.length) {
 accum = accum + a[i]; i++ /* update i, accum */
 }
 return accum;
 }
 }

COMP 211, Spring 2009 11

Condensed Loop for sum
• In Java/C

 for (init; test; incr) body
• abbreviates

 init;
 while (test) {
 body;
 incr;
 }

• Hence, we can rewrite our loop:
 class ArrayUtil {
 public static int sum(int[] a) {
 /** Returns the sum of A[0],…,A[a.length-1] */
 int accum = 0;
 /* Invariant: accum = a[0] + … + a[I-1] */
 for (int i = 0; i < a.length; i++) {
 accum = accum + a[i];
 }
 return accum;
 }
 }

COMP 211, Spring 2009 12

For Next Class
• Homework due on Wednesday. Should be working on

reformulating interpreter methods as visitors.
• To handle big tests (like bigDataX), you need to enlarge

the stack of the DrJava interactions JVM. Insert the
argument string
-Xss64M
in the dialog box labeled JVM args for Interactions JVM
in the Miscellaneous panel of DrJava Preferences.

