
1

 Mutable Trees

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Background
• Binary trees versus general trees

• Binary tree: every internal node has two subtrees. Internal nodes may or
may not contain data. (The former generally preferable.)

• General tree: each internal node has a list of children. General trees are no
longer commonly used as data structures because there is very little fixed
structure to support static type checking. We could define a Java data
structure GenTree<E> where is the the type of data stored in nodes and
then represent arithmetic expressions as GenTree<E> for some appropriate
union type E. But this is a bad idea because the typing information is
weak (no information about the arity of nodes or type restrictions on
subtrees). Justifiably out of favor.

• Binary trees are widely used as a representation sets and maps.
Their type structure is fixed so coding with binary trees is a
relatively safe process. We will focus on binary trees.

COMP 211, Spring 2009 3

Useful General Tree Concepts
• Tree-walking: in processing trees we visit the nodes in some

order. There are three established orders that are named based
on when the root of a tree is visited.
• Pre-order: the root is visited before the children
• Post-order: the root is visited after the children
• In-order (applicable only to binary trees) : the root is visited after the left

tree but before the right tree.
• Conventional tree-walking has become relatively uncommon

because it does not respect type distinctions: roots typically do
not have same types as subtrees. It makes sense for input/output
and not much else.

COMP 211, Spring 2009 4

Background on Binary (Search) Trees
• Functional binary trees and composite pattern lists in Java are internally

represented using binary tree nodes equipped with value, left and right
fields (in some cases additional data fields) and degenerate leaves that either
null or false in Scheme and null in Java. Mutable trees have exactly the
same fields in internal nodes except that they are mutable.

• In building a mutable search tree, new nodes can be added simply by replacing
a degenerate leaf by an internal tree node. The asymptotic cost does not
change but the constant factor is reduced.

• Observation (independent of OO/Java): trees naturally represent both ordered
sets and maps on an ordered set of keys. But these two abstract data structures
have incompatible interfaces. Hence, a collections library needs both a
TreeSet and a TreeMap.

COMP 211, Spring 2009 5

Coding Mutable Tree Data Types
• General Obsevation: treaging boundary conditions (null

references) correctly is critical; a frequent source of errors.
• In an OO language, all ugliness should be encapsulated inside the

class representing the data structure; the internal representation
of a type (e.g., the Node class for a binary tree) should not be
visible to clients of the data type.

• Deleting nodes from a binary search tree, no matter what the
formulation, is rather ugly, particularly if we are seeking a
minimum cost solution. See Cormen et al for code snippets (that
are often inscrutable) along these lines. There is a reasonably
simple strategy (that was unknown to me until I researched it for
this lecture) that is asymptotically optimal that I prefer for
pedagogic purposes.

COMP 211, Spring 2009 6

Deleting Nodes from a Binary Search Tree
• This operation is ugly in all formulations of binary

search trees, particulary if some notion of optimal code
is sought. See Cormen et al for some sample code
fragments (they are kinky and clever).

• There is an intelligible strategy with good performance
that relies on a cute trick. Deleting the minimum
element of a tree is straightforward because the node
containing the minimum element has no subtree.
General deletion can be reduced to finding the
minimum of the right subtree, hoisting it data into the
node being "deleted", and deleting the hoisted node.

COMP 211, Spring 2009 7

Mutable Binary Search Trees
• Go to Drjava code

COMP 211, Spring 2009 8

For Next Class
• Laundry homework due next Wednesday. Assignment

specs are much longer than the code you must write.
Straightforward but not conducive to last-minute solution.
Play with it. Have fun. There is nothing conceptually hard
about the data or algorithms in this assignment. It is an
exercise to help you get up to speed with mutable data
structures in Java.

• Two forms for supporting code base:
• Class per file (prepares you for last two assignments)
• All classes in one file (easier)

• DrJava makes it easy to practice writing code
fragments/exercises. Do it! Don't be afraid to experiment.
The interactions pane makes it easy.

