
 1

 Coping with Reality: Full Java

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2010
 2

 What is Hidden by Language Levels?

• In principle, nothing …
Java could support the notion of immutable classes
with essentially the same semantics as the DrJava
Intermediate Level.

• But Java is what it is …
• Transforming DrJava IL code to full Java code:

[Reference: Notes on OO Design, Ch. ??]
• Explicit constructors
• Explicit accessors
• Explicit overriding of equals
• Explicit overriding of hashCode()
• Explicit overriding of toString()

COMP 211, Spring 2010
 3

 Aside: Distinctions Among Equals

• In computing with mutable objects, several different notions of equality are important.

• The equals method is the notion of equality that the author defined on objects of the
receiver's class. By default (if not overridden), the Java equals method behaves
exactly like == (described below) except when the receiver is null. (Every Java
object belongs to multiple types but only one class.)

• Java also supports the infix operator == which is defined on primitive values (like ints)
as well as objects. What does == check? On objects, whether or not its two arguments
are identical objects (same new allocation) or both null. On primitive values, whether
the two values are equal. You cannot compare primitive values and objects (their types
are incompatible).

• Where does this distinction bite? When using == on objects when equals is meant.
Java tries to help programmers avoid these bugs on Strings (by interning all constant
Strings). Demo. See OO Design Notes, ??

• In the Language Levels (immutable) Java subset, we only use == on primitive values.

COMP 211, Spring 2010
 4

 Explicit Constructors

• A constructor definition has the form:
<ClassName>(arg1, …, argn) {
 <optional supercall on superclass constructor>
 <code body that initializes instance fields of class>
}

• All fields not initialized in explicit constructors are set to the
default value for their respective type: 0 for all primitive
number/char types, false for boolean and null for all
object (reference) types.

• Multiple constructors are permissible (static overloading).
• If no explicit constructors are provided, Java automatically

generates a default 0-ary constructor with an empty body.

COMP 211, Spring 2010
 5

 Explicit Accessors

• An accessor definition is an ordinary instance method
definition of the form:
<accessorName>() { return <fieldName>; }

• The choice of <accessorName> is arbitrary. I recommend
using the corresponding <fieldName> . Another common
convention is get<fieldName>.

• Instance fields should never be public.

COMP 211, Spring 2010
 6

 Explicit Overriding of equals

• The equals method, which has signature,
 public boolean equals(Object other);
is inherited in any program-defined class from its superclass. In Object,
equals means object identity (same allocation using new. This default is
almost never the proper definition for an immutable class, but it is usually
the right definition for a mutable class.

• In the Java programming culture, the following rule is very widely taught:
always override hashCode, which has signature:
 public int hashCode();
when you override equals. Their meanings purportedly must preserve
the following invariant:
 a.equals(b)  a.hashCode() == b.hashCode()
This rule is compelling for immutable data but it makes no sense for
mutable data. Why? You should never hash on mutable data using
hashCode. The Java libraries include IdentityHashMap (which hashes
on the object address) for this purpose.

COMP 211, Spring 2010
 7

 Overriding of equals cont.
• How should we write code to override equals an immutable class

C with fields f, g, h? For the complete answer, look at the .java
files generated by the DrJava language levels facility. A
satisfactory answer in some contexts is the following:
• public boolean equals(Object other) {

 return (other instanceof C) && f.equals(other.f) &&

 g.equals(other.g) && h.equals(other.h);
• Note: if a field is of primitive type, the proper comparison

operator is infix == .

• What is wrong with this definition? What happens if we extend
class C?

• What is fundamentally wrong with using the == operator instead of
equals on object types? Not algebraic (mathematical) equality.

COMP 211, Spring 2010
 8

Explicit Overriding of hashCode

For immutable classes, the stock invariant linking equals and hashCode is critical because
hash tables will break if the invariant is violated.

What is a hash table?

• This data structure is provided in several flavors by the java.util library.

• A hash function maps allocated objects to an int. Good hash functions almost always
map unequal objects to unequal values. The Java Object class includes the method
hashCode, which computes a value (typically the address of the object when hashCode is
first called) that is different for nearly all objects.

• Hash tables use an object's hashCode to determine where to place the object (which slot)
in an array (the contents of the table). Each slot really corresponds to a short list {typically
length 0 or 1) of objects, which must be searched when looking up an object in the hash
table. Since two distinct objects can (rarely) have the same hashCode, hash tables
ultimately use the equals method to determine when objects are distinct (in searching the
list of object mapped to the same hash table slot).

• If equalsHashMap is overridden in a class C, equal but different objects (allocations) of
class C may be assigned different hashCodes, which breaks hash tables (look-ups can
fail!), which must map equal objects to the same hash table slot.

COMP 211, Spring 2010
 9

 Hash table classes in Java libraries

In java.util, the Java classes HashSet<A> and
HashMap<A,B> use hash tables to implement sets of
type A and maps from type A to type B, respectively.
They work just like our TreeSet<A> and
TreeMap<A,B> classes, except that they do not
support operations that depend on an ordering relation
on A (Comparable<A>).

Exercise: given our OOTreeMap<A,B>, write
OOTreeSet<A>.

Observation: hash tables provide an efficient
implementation of sets and maps even when there is
no ordering on the key type.

COMP 211, Spring 2010
 10

Explicit Overriding of toString
• The default definition of toString, which has signature
 public String toString();
is awful: <className>@<hashCode>.

• Why is toString important? This representation is used anytime that an object is
printed, e.g. in many testing and debugging contexts.

• Should you routinely override toString? ​
• For data classes, I say yes, because you never know when you will need to print

an object when debugging. In addition, it is often more convenient to compare the
string representations of objects in testing than it is to test for equality (which
mandates overriding equals).

• I recommend against overriding equals for mutable data classes. Why? Because
it is misleading. There Is no sensible notion of equality on mutable objects (other
than == which agrees with default definition of equals) that works in hash tables
(java.util.IdentityHashMap uses == instead of equals). When you write
tests using string representations, you realize that you are observing the attributes
of an object, not checking for fundamental equality. (Remember to use toString
explicitly in your tests; otherwise you may get default equals. JUnit should
generically type the method assertEquals but it does not; it will willingly
compare a String with some other Object type.

COMP 211, Spring 2010
 11

The Nitty Gritty in HW10

• The assignment is straightforward provided:
• You are comfortable with full Java.

• You are comfortable writing visitor classes including anonymous visitor
classes

• You are comfortable using BiList iterators (which are an improvement over
the iterators built-in to java.util.

• You can imitate the two forms of tests given the same Junit test suite.

• If you are confused, read Ch. 1 in our Notes on OO Design carefully
(particularly 1.10 – 1.13). If you are confused about basic Java
operations like ==, you should read all of Ch.1 carefully and do the
interactive finger exercises in DrJava.

COMP 211, Spring 2010
 12

For Next Class
• Homework due Friday (but you now have a total

of 12 slip days). You need an essentially working
HW10 by then even if you plan to use a slip day
or two because you need to get started on HW11
which will be posted on Friday. HW12 will be
posted a week from Friday.

• Note: Exam2 will be given during our final exam
slot on the morning of April 30. Due to honor
code issues, take home exams will not be given
in Comp 211 for the forseeable future.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

