
1

 Designing OO Data Structures

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Controversial Issue
• How much should we compromise good object-oriented style to

achieve high performance or to incorporate conventional
procedural data structure implementations?

• Fact: most Java code, even Java libraries, is not written in a
sophisticated OO style. Why?
• Most Java programmers (including recent Comp Sci graduates) don't

know enough OO design concepts to write sophisticated OO code.
• Expressing code in a form where dynamic dispatch is the principal control

mechanism often adds some (constant factor) overhead. In fact, the
overhead can be substantial if the OO implementation is not written in a
lean style. In a lean OO style, we try to minimize the creation of extra
container (wrapper objects) which are critical to simplified OO control
structure.

• None of the major reference books on Data Structures and Algorithms
write code in a sophisticated OO style.

COMP 211, Spring 2009 3

Case Study: Mutable Binary Trees
• Core topic in basic course on data structures & algorithms.
• Code for conventional procedural solution has been repeatedly

polished but it is still astonishingly ugly and convoluted (albeit
efficient).

• Standard procedural solutions can be hidden inside an OO class, e.g.
the TreeMap class posted with this lecture. Please read it. It is
reasonably clean in comparison to most procedural solutions but it
relies on complex looping and conditional (flag passing and testing)
control.

• In contrast, the lean OO solution (derived from a heavier, more typical
OO solution proposed by Nguyen and Wong) is much lighter weight
and easier to understand although there are frequent subtle distinctions
between a cell (RefNode) containing (a reference to) a Node and (a
reference to) a Node. Fortunately, static type-checking catches nearly
all bugs where code confuses the two.

COMP 211, Spring 2009 4

Why Is the OO Code Simpler?
• The OO code uses a very lightweight version of the state pattern. The left and right

subtrees in tree nodes are not references to other tree nodes. Instead they are state
objects that can be either empty on non-empty. Conventional null references cannot be
cleanly used instead emtpy state objects because they are NOT objects; this fact causes
ENORMOUS grief. (Note: in languages where fields can be passed by reference, the
field containing a null value can be treated as an object. (C++ [in recent incarnations]
is such a language. Passing pointer fields by reference may be a good strategy for a
heroic C++ programmer.)

• Since the left and right fields of a node are ALWAYS mutable state objects (notably
when they are in the empty state), they can be modified as needed.. As a result, the
OO code never has to focus on the parents of nodes to be deleted or inserted. The
deletion or insertion can be performed directly on the non-empty node to be deleted or
the empty node to be replace by an inserted node.

• Please compare the code in TreeMap.java (a conventional procedural solution
encapsulated as a class and OOTreeMap.java which is the lightest weight OO
solution that we know how to construct. We strongly prefer it to the procedural
solution unless performance constraints prevent its use.

COMP 211, Spring 2009 5

Why Is Well-Written Procedural Code Faster?
• The OO code in effect uses an extra level of indirection to

eliminate the need for ugly special cases. A state object is a
container that can hold different variants in a union or composite
pattern. (Think of state as a mutable field bound to the possible
variants of a composite type.)

• In this case, we have a simple composite that is either empty or
non-empty (much like functional Lists) where the non-empty
object contains two state objects representing left and right
subtrees. To minimize the cost of the state pattern, we represent
the the empty state by a null referdnce rather than a pointer to an
empty object EMPTY.

COMP 211, Spring 2009 6

Why Is Well-Written Procedural Code Faster?
• If EMPTY can be represented as a singleton, there is little

advantage to using null, but Java's formulation of generic typing
forecloses the type safe use of singletons. In this example, we
need generic typing to get accurate static type checking so we use
null (wrapped inside a state object) to represent empty trees.

• It would be illuminating to compare the performance of the two
implementations on some large tests. I expect the OO code to
perform well (within a factor of 2) of the procedural code, but
only testing can determine whether the OO code is as efficient as
my intuition leads me to believe.

COMP 211, Spring 2009 7

Mutable Binary Search Tree Implementations Compared

• Go to Drjava code

COMP 211, Spring 2009 8

For Next Class
• Laundry homework due Wednesday. Assignment specs

are much longer than the code you must write.
Straightforward but not conducive to last-minute solution.
Play with it. Have fun. There is nothing conceptually hard
about the data or algorithms in this assignment. It is an
exercise to help you get up to speed with mutable data
structures in Java.

• Two forms for supporting code base:
• Class per file (prepares you for last two assignments)
• All classes in one file (easier)

• DrJava makes it easy to practice writing code
fragments/exercises. Do it! Don't be afraid to experiment.
The interactions pane makes it easy.

